Square B

Square

 \mathbf{C}

Square A

Informal Proof of the Pythagorean Theorem #2

A right triangle has been drawn for you on a piece of graph paper, with leg measurements of 3 units and 4 units. A square has also been drawn on each side of the triangle.

> 1. Cut out squares A and B and place them side by side.

2. Draw two triangles as shown below; cut along the hypotenuses and slide as shown.

3. Tape the repositioned triangles.

- **4.** How does your new square compare with square C?
- **5.** Explain how the above informally proves the Pythagorean Theorem: $a^2 + b^2 = c^2$.

Jame	_ Period	Date
------	----------	------

Informal Proof of the Pythagorean Theorem #2

