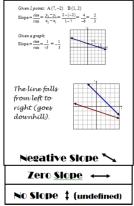
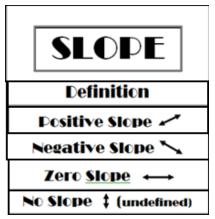

Slope Foldable—Assembly Instructions

1. This is designed as a teacher's resource—student would create the foldable with blank paper and the enter the information themselves!

2. Run (or paste) the first two sheets back-to-back...one side reversed.

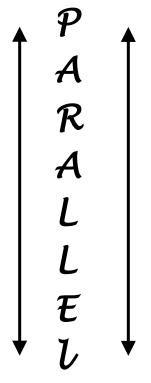
For instance,

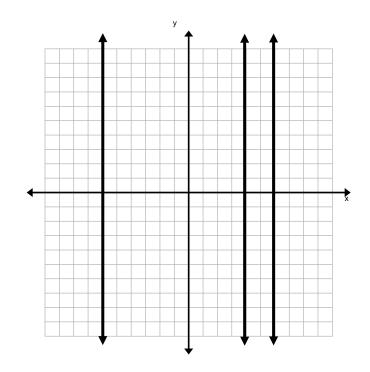



Likewise, "Definition" pastes back-to –back with "Zero Slope" and "Positive Slope" pastes to "Negative Slope".

3. Stack the 3 sheets so that the bold titles of "Negative Slope", "Zero

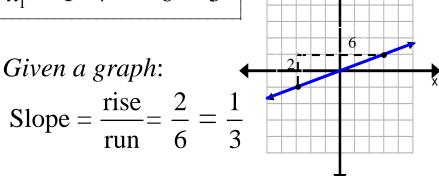
Slope" and "No Slope" are equally spaced:




4. Fold down 3 sheets to create 6 tabs as shown. Glue or staple at fold.

Slope = the ratio of the vertical rise to the horizontal run between any two points on a line.

The line is

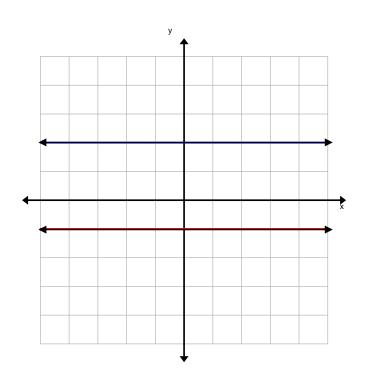


to the y-axis (the run = 0)

No Slope ‡ (undefined)

SLOPE

Slope =
$$\frac{\text{rise}}{\text{run}} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{1 - 5}{1 - 7} = \frac{-4}{-6} = \frac{2}{3}$$



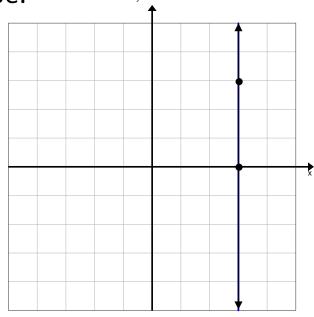
The line is

parallel

to the x-axis

(the rise = 0)

Zero Slope ←→


Given 2 points, X (6, 5) and Y (6,-3), find the slope.

Slope =
$$\frac{\text{rise}}{\text{run}} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-3 - 5}{6 - 6} = \frac{-8}{0}$$
, which is undefined,

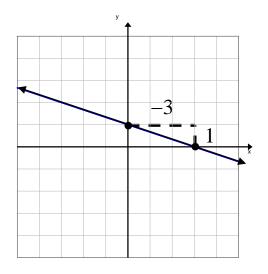
so NO SLOPE!

Given a graph, find the slope.

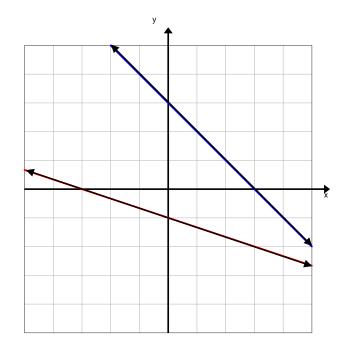
$$\frac{\text{rise}}{\text{run}} = \frac{3}{0} = \text{undefined},$$
so no slope

Slope - the steepness of a line

$$\frac{\text{rise } \updownarrow}{\text{run } \longleftrightarrow} = \frac{\text{the change in } y}{\text{the change in } x} = \frac{y_2 - y_1}{x_2 - x_1}$$


Definition

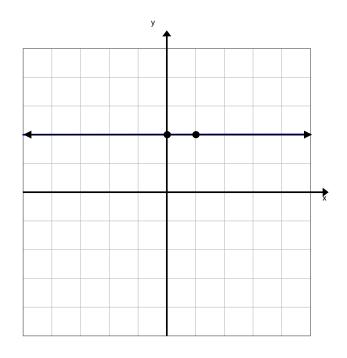
Given 2 points: A (7,–2) B (1, 2)


Slope =
$$\frac{\text{rise}}{\text{run}} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - (-2)}{1 - 7} = \frac{4}{-6} = -\frac{2}{3}$$

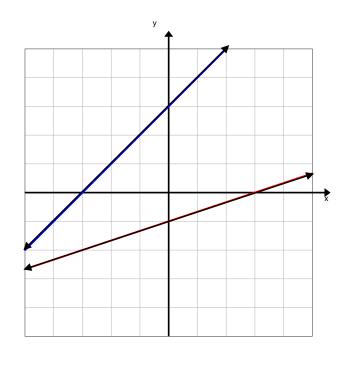
Given a graph:

Slope =
$$\frac{\text{rise}}{\text{run}} = \frac{1}{-3} = -\frac{1}{3}$$

The line falls from left to right (goes downhill).


Negative Slope

Given 2 points: A(-2, 5) B(1, 5)


Slope =
$$\frac{\text{rise}}{\text{run}} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{5 - 5}{1 - (-2)} = \frac{0}{3} = 0$$

Given a graph:

Slope =
$$\frac{\text{rise}}{\text{run}} = \frac{0}{1} = 0$$

The line rises from left to right (goes uphill).

Positive Slope