Properties of Polynomial Functions

I: Investigating the End Behavior and Turning Points

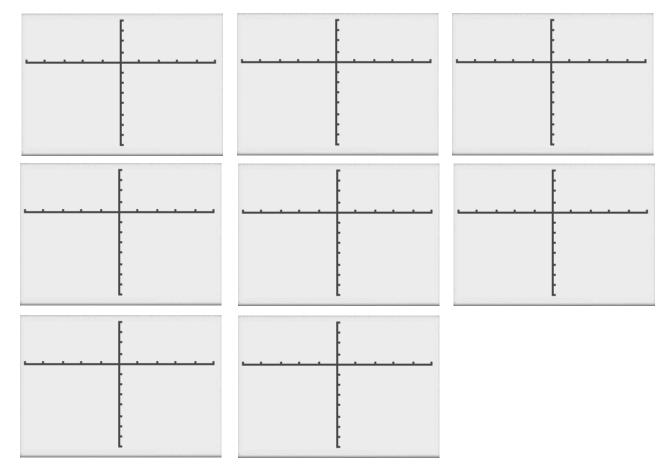
Using a graphing calculator, adjust the window as shown. Graph each function and complete the table.

a)
$$f(x) = 9x^2 - 8x - 2$$

c)
$$f(x) = 2x^6 - 13x^4 + 15x^2 + x - 17$$

e)
$$f(x) = x^3 - 5x^2 + 3x + 4$$

g)
$$f(x) = -x^7 + 8x^5 - 16x^3 + 8x$$
 h) $f(x) = -2x^3 + 8x^2 - 5x + 3$


b)
$$f(x) = -x^4 - 3x^3 + 3x^2 + 8x + 5$$

c)
$$f(x) = 2x^6 - 13x^4 + 15x^2 + x - 17$$
 d) $f(x) = -2x^4 - 4x^3 + 3x^2 + 6x + 9$

f)
$$f(x) = 2x^5 + 7x^4 - 3x^3 - 18x^2 - 20$$

h)
$$f(x) = -2x^3 + 8x^2 - 5x + 3$$

Function Degree		Number of	Leading	Degree:	End Behavior	
	Turning Points	Coefficient: + or - ?	even or odd	$X \to -\infty$	$X \to +\infty$	
a)						
b)						
c)						
d)						
e)						
f)						
g)						
h)						

Observations

The maximum number of turning points in the graph of a polynomial function of degree 6 is ______.

The maximum number of turning points in the graph of a polynomial function of degree 7 is ...

The maximum number of turning points in the graph of a polynomial function of degree n is ______.

Polynomials with EVEN degree have end behaviours that are _____

Polynomials with ODD degree have end behaviours that are _____

State the **end behaviours** of a function with a degree that is:

- even and has a positive leading coefficient
- even and has a negative leading coefficient _____ b)
- odd and has a positive leading coefficient c)
- d) odd and has a negative leading coefficient

II: Investigating the Number of Zeros

Using a graphing calculator, adjust the window as shown below. Graph each function and complete the table.

a)
$$f(x) = x^3 - 2x^2 - 4x + 8$$

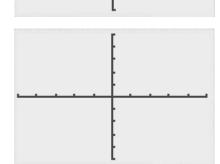
c) $f(x) = x^3 + 2x^2 - 3x - 5$

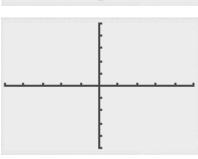
b)
$$f(x) = x^3 + x^2 - 2x - 7$$

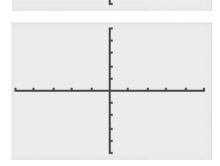
b)
$$f(x) = x^3 + x^2 - 2x - 7$$

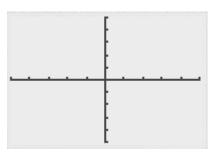
d) $f(x) = x^4 + 2x^3 - x^2 - 2x$

e)
$$f(x) = -x^4 + 2x^3 + x^2 + 2x$$


e)
$$f(x) = -x^4 + 2x^3 + x^2 + 2x$$
 f) $f(x) = 2x^4 - 6x^3 + x^2 + 4x + 5$

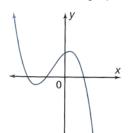

a)
$$f(x) = -x^4 - x^3 + 3x^2 + x - 2$$
 h) $f(x) = x^4 + x^3 + x + 1$


h)
$$f(x) = x^4 + x^3 + x + 1$$

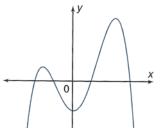


MINDOM Xmin=-10 Xmax=10

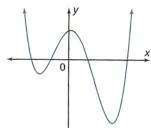
Function	Degree	Number of Zeroes
a)		
b)		
c)		
d)		
e)		
f)		
g)		
h)		

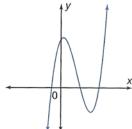

Observations

Degree	Minimum number of zeros	Maximum number of zeroes
3		
4		
5		
6		
n		


III: Exercises

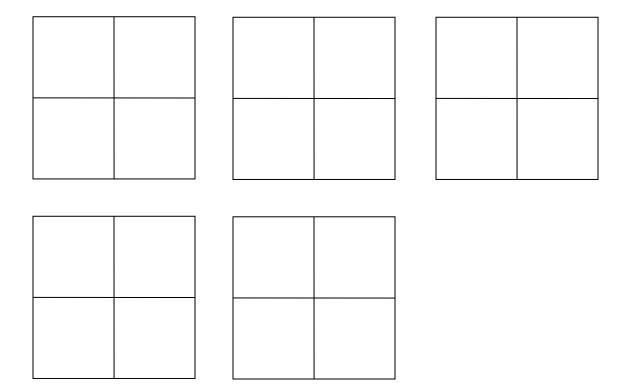
1. Refer to the graphs of the following polynomial functions to complete the chart below.


a)


b)

c)

d)


Function	Number of Turning Points	End B	ehavior	Leading Coefficient: + or - ?	Degree
		$X \to -\infty$	$X \to +\infty$		
a)					
b)					
c)					
d)					

2. Explain why **odd-degree** polynomial functions can have only *local* maximums and local minimums, but **even-degree** polynomial functions can have an *absolute* maximum or minimum.

3. Describe the end behavior of each polynomial function by referring to the degree and the leading coefficient.

Function	End Behavior		
Function	$X \rightarrow -\infty$	$X \to +\infty$	
a) $f(x) = 2x^2 - 3x + 5$			
b) $f(x) = -3x^3 + 2x^2 + 5x + 1$			
c) $f(x) = 5x^3 - 2x^2 - 2x + 6$			
d) $f(x) = -2x^4 + 5x^3 - 2x^2 + 3x - 1$			
e) $f(x) = 0.5x^4 + 2x^2 - 6$			
f) $f(x) = -3x^5 + 2x^3 - 4x$			

- 4. Sketch the graph of a polynomial function that satisfies each set of conditions.
 - a) degree 4, positive leading coefficient, 3 zeroes, 3 turning points
 - b) degree 4, negative leading coefficient, 2 zeroes, 1 turning point
 - c) degree 4, positive leading coefficient, 1 zero, 3 turning points
 - d) degree 3, negative leading coefficient, 1 zero, no turning point
 - e) degree 3, positive leading coefficient, 2 zeroes, 2 turning points

