Prove Theorems about Lines and Angles

OBJECTIVE #: G.CO.9

OBJECTIVE

Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a
transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are
congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the
segment's endpoints.

BIG IDEA (Why is this included in the curriculum?)

• To establish angle and length relationships as they relate to parallel and perpendicular lines.

PREVIOUS KNOWLEDGE (What skills do they need to have to succeed?)

- The student must understand parallel lines.
- The student must understand the types of transformations.

VOCABULARY USED IN THIS OBJECTIVE (What terms will be essential to understand?)

PREVIOUS VOCABULARY (Terms used but defined earlier)

- Angle: A geometric figure formed by rotating a ray about its initial point.
- Corresponding Angles: Two angles that are formed by two lines and a transversal which lie in the same position with respects to the lines and the transversal.
- Equidistant: Two points that are the same distance from a given point.
- Parallel Lines: Two lines that are coplanar and do not intersect.
- Perpendicular: Two lines/segments/rays that intersect to form right angles.
- Perpendicular Bisector: A perpendicular line/segment/ray that intersects a segment at its midpoint.

NEW VOCABULARY (New Terms and definitions introduced in this objective)

• Alternate Interior Angles: Two angles that are formed by two lines and a transversal and that lie between the two lines on opposite sides of the transversal.

• Alternate Exterior Angles: Two angles that are formed by two lines and a transversal and that lie outside the two lines on opposite sides of the transversal.

• Complementary Angles: Two angles whose measures have the sum 90°. [G.CO.10]

• Consecutive Interior Angles (same Side Interior Angles): Two angles that are formed by two lines and a transversal and that lie between the two lines on the same side of the transversal.

• Linear Pair: Two adjacent angles whose non-common sides are opposite rays, thus making them supplementary. [G.CO.10]

Supplementary Angles: Two angles whose measures have the sum 180°. [G.CO.10]

• Transversal Line: A line that intersects two or more coplanar lines at different points

• Vertical Angles: The two non-adjacent angles formed by intersecting lines.

SKILLS (What will they be able to do after this objective?)

- Students will be able to identify all of the types of angle relationships formed when two parallel lines are cut by a transversal.
- Students will be able to know all of the relationships between pairs of angles.
- Students will be able to prove that all points on a perpendicular bisector of a segment are equidistant from the segment endpoints.

SHORT NOTES (A short summary of notes so that a teacher can get the basics of what is expected.)

 This objective is introduced in geometry using the transformations described in G.CO.4 by translating along vectors.

- For example, corresponding angles are formed by translating one angle along the transversal onto its image.
 - See attached files for summarization that may be used for this objective.
- \circ $\angle AXY$ is translated along \overrightarrow{XY}

O This results in \overrightarrow{AB} and $\overrightarrow{A'B'}$ being parallel lines, therefore creating congruent corresponding angles $\angle AXY$ and $\angle A'X'Y$.

- o Students should be encouraged to explore the different types of transformations or composite transformations that form these pairs of angles.
- Have the students construct the perpendicular bisector of a segment. Allow students to choose points along the bisector and measure the distance from the endpoints of the segment.
 - \circ Example: Student drew \overline{BC} and constructed the perpendicular bisector. Student then chose point A and measured the distance from A to C and from A to C. Students can compare their findings (that $\overline{AC} \cong \overline{AB}$) to determine this holds true for any point along the perpendicular bisector.

Below is the formal two-column proof.

Given: $\triangle ABC$ with perpendicular bisector \overrightarrow{BD}

Prove: $\overline{AB} \cong \overline{BC}$

STATEMENT	REASON
\overline{BD} is the \perp bisector of $\angle B$	Given
$\overline{AD} \cong \overline{CD}$	Definition of a \perp Bisector
	(D is the midpoint of \overline{AC})
∠ADB & ∠CDB are right ∠'s	Definition of a ⊥ Bisector
	(\overline{BD} is \perp to \overline{AC})
∠ADB ≅ ∠CDB	All Right Angles are ≅
$\overline{BD} \cong \overline{BD}$	Reflexive Property (Common Side)

$\triangle ABD \cong \triangle CBD$	SAS
$\overline{AB} \cong \overline{BC}$	CPCTC (Corresponding Parts of Congruent
	Triangles are Congruent)

MISCONCEPTIONS (What are the typical errors or difficult areas? Also suggest ways to teach them.)

• Although these pairs of angles are formed without the lines being parallel, the congruence and supplementary aspects are not applicable if the original lines are not parallel.

FUTURE CONNECTIONS (What will they use these skills for later?)

• These angle relationships of parallel lines and perpendicular bisector will be utilized to discover the characteristics of different parallelograms.

ADDITIONAL EXTENSIONS OR EXPLANATIONS (What needs greater explanation?)

- Students will utilize congruent triangles to prove all points on a perpendicular bisector of a segment are equidistant from the segment endpoints.
- Corresponding Angles: Two angles formed by translating a given angle in a plane.

ASSESSMENTS (Questions that get to the heart of the objective – multiple choice, short answer, multi-step)

1) Correctly match the following and include the transformation that maps one angle onto its pair.

___ 1. Alternate Interior Angles E

A. $\angle 4$ and $\angle 6$

Translate $\angle 3$ along the transversal onto $\angle 7$. Then rotate 180° onto $\angle 6$

_____ 2. Alternate Exterior Angles C

B. $\angle 1$ and $\angle 5$

Rotate $\angle 2$ 180° and then translate along the transversal onto $\angle 7$

______ 3. Corresponding Angles B

C. $\angle 2$ and $\angle 7$

Translate $\angle 1$ along the transversal onto $\angle 5$

_____ 4. Consecutive Interior Angles A

D. $\angle 1$ and $\angle 4$

Not a transformation

Vertical Angles D

E. $\angle 3$ and $\angle 6$

Rotate $\angle 1$ 180° onto $\angle 4$

2) Find the measure of angle a and b if $t \parallel m$. Justify your reasoning using transformations.

 $a = 125^{\circ}$ by translating the given angle along the transversal

 $b = 125^{\circ}$ by rotating the given angle 180°

3) Find the measure of angle a and b if $t \parallel m$. Justify your reasoning using transformations.

The given angle and b form a linear pair, therefore b = 115°. Rotate b 180° and translate along the transversal onto a. Therefore a = 115°

From CCSD Geometry Honors Semester 1 Practice Exam 2012 – 2013

1. Use the diagram.

Which statement would be used to prove lines r and s are parallel?

- (A) $\angle 1$ and $\angle 3$ are congruent
- (B) $\angle 2$ and $\angle 7$ are complementary
- (C) $\angle 4$ and $\angle 1$ are congruent
- (D) $\angle 8$ and $\angle 6$ are supplementary

2. In the diagram, $m \parallel n$ and $p \parallel q$.

What is the value of x?

- (A) 44
- (B) 88
- (C) 92
- (D) 176

For questions 3-6, use the diagram where B is the reflection of A across \overrightarrow{PQ} .

- 3. PA = PB
 - (A) True
 - (B) False
- 4. $\overrightarrow{PQ} \perp \overline{AB}$
 - (A) True
 - (B) False
- 5. AQ = QB
 - (A) True
 - (B) False
- 6. $PQ = \frac{1}{2}AB$
 - (A) True
 - (B) False