Name:	Period: Dat	e:

NON-CALCULATOR SECTION

Vocabulary: Define each word and give an example.

- 1. vector projection
- 2. scalar
- 3. polar coordinates

Short Answer:

- 4. Describe how to test for symmetry over the x-axis on a polar curve.
- 5. What are all of the other ways to write the point r, θ in polar form?
- 6. How many petals are in the rose curve $r = a \cos n\theta$? (Note: You must answer for both cases (n odd and n even).

Review:

- 7. Write the expression in factored form involving one trigonometric function only: $\cos x - 2\sin^2 x + 1$
- 8. Evaluate exactly:

a.
$$\sec \frac{4\pi}{3}$$

b.
$$\sin \frac{3\pi}{4}$$
 c. $\tan 270^{\circ}$

Problems:

Be sure to show all work used to obtain your answer. Circle or box in the final answer.

9. Let $\mathbf{u} = \langle 5, -4 \rangle$, $\mathbf{v} = \langle 1, -2 \rangle$. Find $2\mathbf{u} - \mathbf{v}$.

.

10. Find a unit vector in the direction of $\mathbf{v} = \langle 3, -1 \rangle$ and write your answer in component form.

11. Given that P = 4,-1 and Q = 7,-2, find the component form and magnitude of the vector \overrightarrow{PQ} .

12. Determine whether the vectors \mathbf{u} and \mathbf{v} are parallel, orthogonal, or neither.

$$\mathbf{u} = \langle 5, 3 \rangle, \ \mathbf{v} = \left\langle -\frac{10}{4}, -\frac{3}{2} \right\rangle$$

13. Find $\mathbf{a} \cdot \mathbf{b}$. $\mathbf{a} = 12\mathbf{i} - 4\mathbf{j}$, $\mathbf{b} = -3\mathbf{i} + \mathbf{j}$

14. Eliminate the parameter and identify the graph of the parametric curve.

$$x = t - 3$$
 and $y = \frac{2}{t}$

15. Eliminate the parameter and identify the graph of the parametric curve.

$$x = 9\cos t$$
, $y = 9\sin t$

16. Find the parametrization for a circle with center 6,7 and radius 8.

17. Plot the point with the polar coordinates $\left(-2, \frac{5\pi}{6}\right)$.

18. Find the rectangular coordinates of the point with the given polar coordinates.

$$-2,150^{\circ}$$

- 19. Which of the following polar coordinate pairs does not represent the point with rectangular coordinates -2,-2?
 - A) $2\sqrt{2},-135^{\circ}$ B) $2\sqrt{2},225^{\circ}$ C) $-2\sqrt{2},45^{\circ}$ D) $-2\sqrt{2},-315^{\circ}$ E) $-2\sqrt{2},135^{\circ}$

- 20. Convert the rectangular equation to polar form: 3x + 2y = 4

21. Convert the polar equation to rectangular form and identify the graph. $r = 2\sin\theta - 4\cos\theta$

22. Find the product: 9+2i 7-9i

23. Write the expression in standard form: $\frac{4+4i}{5+6i}$

Name:	Period:	Date:
Tullie.	<u>. 1 C110u</u>	_Dutc

CALCULATOR SECTION

- 24. Find the component form of the vector with magnitude 8 and direction angle -20° .
- 25. Find the angle between the given vectors to the nearest tenth of a degree. $\mathbf{u} = \langle 5, -4 \rangle$, $\mathbf{v} = \langle 1, -2 \rangle$.
- 26. Determine if the graph is symmetric about the *x*-axis, *y*-axis, or the origin. Verify your answer algebraically. $r = 2 + 2\sin\theta$

27. Find the maximum r-value and name the graph of the polar curve $r = 2 + 3\cos\theta$.

28. Express the complex number $-1 + i\sqrt{2}$ in trigonometric form. Let $0 \le \theta < 2\pi$.

29. Write the complex number in standard form. $3 \cos 150^{\circ} + i \sin 150^{\circ}$

30. Let
$$z_1 = \sqrt{3} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right)$$
 and $z_2 = \frac{1}{3} \left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right)$

- b. Find $z_1 \cdot z_2$ and write in standard form.
- c. Find $\frac{z_1}{z_2}$ and write in standard form.

31. Use DeMoivre's theorem to find the indicated power of the complex number. Write your answer in standard form. $\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^3$

32. Find the cube roots of $3\left(\cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3}\right)$.