Unit 3: Integer Exponents & Scientific Notation				
<i>Cluster</i> : Work with radicals and integer exponents.				
Nevada Academic V Content Standard f	What does this standard mean that a student will know and be able to do? (adapted from North Carolina δ^{th} Grade Standards, Unpacked Content)			
EXAMPLATE Content Standard 8.EE.A.1 Know and apply the properties of integer exponents to generate equivalent numerical expressions. For example, $3^2 \times 3^{-5} = 3^{-3} = \frac{1}{3^3} = \frac{1}{27}$	SEE.1 In 6th grade, students wrote and evaluated simple numerical expressions with whole number exponents (ie. $5^3 = 5 \cdot 5 \cdot 5 = 125$). Integer (positive and negative) exponents are further developed to generate equivalent numerical expressions when multiplying, dividing or raising a power to a power. Using numerical bases and the laws of exponents, students generate equivalent expressions. Students understand: • Bases must be the same before exponents can be added, subtracted or multiplied. (<i>Example 1</i>) • Exponents are subtracted when like bases are being divided. (<i>Example 2</i>) • A number raised to the zero (0) power is equal to one. (<i>Example 3</i>) • Negative exponents can be expressed as a positive if left in the denominator. <i>(Example 4</i>) • Exponents are added when like bases are being multiplied. (<i>Example 5</i>) • Exponents are multiplied when an exponents is raised to an exponent. (<i>Example 6</i>) • Several properties may be used to simplify an expression. (<i>Example 7</i>) Example 1: $\frac{2^3}{5^2} = \frac{8}{25}$ $\frac{2^2}{2^6} = 2^{2-6} = 2^{-4} = \frac{1}{2^4} = \frac{1}{16}$ Example 3: $6^0 = 1$ Students understand this relationship from examples such as $\frac{6^2}{6^2}$. This expression could be simplified as $\frac{36}{26} = 1$. Using the laws of exponents, this expression could also be written as $6^{2-2} = 6^0$. Combining these gives $6^0 = 1$. Example 4: $\frac{3^{-2}}{2^4} = 3^{-2} \times \frac{1}{2^4} = \frac{1}{3^2} \times \frac{1}{2^4} = \frac{1}{9} \times \frac{1}{16} = \frac{1}{144}$ Example 5: $(3^2) (3^4) = (3^{2-4}) = 3^6 = 729$ $(4^3)^2 = 4^{32-2} = 4^6 = 4,096$ Example 7: $\frac{(3^2)^4}{(3^2)(3^3)} = \frac{3^{2x4}}{3^{2+3}} = \frac{3^8}{3^5} = 3^{3-5} = 3^3 = 27$			

	8.EE.3 Students use scientific notation to express very	y large or very small numbers.		
	Students compare and interpret scientific notation qua	ntities in the context of the		
8.EE.A.3	situation, recognizing that if the exponent increases by one, the value increases 10			
Use numbers	times. Likewise, if the exponent decreases by one, the value decreases 10 times.			
expressed in the form	Students solve problems using addition, subtraction or multiplication, expressing			
of a single digit times	the answer in scientific notation.			
an integer power of 10	Evenuela 1.			
to estimate very large	Example 1: Write 75 000 000 000 in scientific notation			
or very small	while $75,000,000,000$ in scientific notation.			
quantities, and to	<i>Solution</i> . 7.5 x 10			
express how many	Example 2:			
times as much one is	Write 0.0000429 in scientific notation.			
than the other. For	<i>Solution:</i> 4.29 x 10 ⁻⁵			
example, estimate the	Example 2.			
population of the	Example 5: Express 2.45 x 10^5 in standard form			
United States as	Express 2.45 x 10 In standard form.			
$3 \times 10^{\circ}$ and the	<i>Solution</i> . 245,000			
population of the world	Example 4:			
as $7 \times 10^{\circ}$, and	How much larger is 6×10^5 compared to 2×10^3 ?			
determine that the	Solution: 300 times larger since 6 is 3 times larger that	In 2 and 10^5 is 100 times		
world population is	larger than 10 ³ .			
more than 20 times	Frample 5.			
larger.	Example 5. Which is the larger value: 2×10^6 or 9×10^{52}			
	Solution: 2×10^6 because the exponent is larger			
	Sourion. 2 x 10 because the exponent is harger			
	8.EE.4 Students understand scientific notation as gene	erated on various calculators		
	or other technology. Students enter scientific notation	using E or EE (scientific		
	notation), * (multiplication), and ^ (exponent) symbol	S.		
8.EE.A.4				
Perform operations	Example 1:			
with numbers	2.45E23 is 2.45 x 10^{23} and 3.5E ⁻⁴ is 3.5 x 10^{-4} (NOTE: There are other notations			
expressed in scientific	for scientific notation depending on the calculator bein	ng used.)		
notation, including				
problems where both	Students add and subtract with scientific notation.			
decimal and scientific	Example 2:	ash ash wasnes. In July 2011		
notation are used. Use	In July 2010 there were approximately 500 million Facebook users	How mony more wore wore		
scientific notation and	there in 2011? Write your answer in scientific notation	. How many more users were		
choose units of	Solution: Subtract the two numbers: 750,000,000 - 50	$0.000.000 - 250.000.000 \rightarrow$		
appropriate size for	2.5×10^8	0,000,000 - 230,000,000 - 2		
large or yery small	2.0 A 10			
auge of very small	Students use laws of exponents to multiply or divide r	numbers written in scientific		
millimeters per vear	notation, writing the product or quotient in proper scie	entific notation.		
for seafloor spreading)	Example 3:			
Interpret scientific	$(6.45 \times 10^{11})(3.2 \times 10^4) = (6.45 \times 3.2)(10^{11} \times 10^4)$	Rearrange factors		
notation that has been	$= 20.64 \times 10^{15}$	Add exponents when		
generated by		multiplying powers of 10		
technology.	$= 2.064 \times 10^{10}$	Write in scientific notation		

Example 4:
$$\frac{0.824 \times 10^5}{1.6 \times 10^{-2}} = 0.515 \times 10^{5-(-2)}$$

Subtract exponents when dividing powers of 10
 $= 0.515 \times 10^7$
 $= 0.515 \times 10^7$
 $= 5.15 \times 10^6$ Example 5: $(0.0025)(5.2 \times 10^4) = (2.5 \times 5.2)(10^3 \times 10^5)$
 $= 13 \times 10^2$
 $= 1.3 \times 10^3$ Write factors in scientific notation
Rearrange factors
Add exponents when multiplying powers of 10
 $= 1.3 \times 10^3$ Example 6:
The speed of light is 3×10^8 meters/second. If the sun is 1.5×10^{11} meters from
earth, how many seconds does it take light to reach the earth? Express your answer
in scientific notation.
Solution: 5×10^2
(light)(x) = sun, where x is the time in seconds
 $(3 \times 10^8) x = 1.5 \times 10^{11}$
 $x = \frac{1.5 \times 10^{11}}{3 \times 10^8}$ Students understand the magnitude of the number being expressed in scientific
notation and choose an appropriate corresponding unit.
Example 7:
 3×10^8 is equivalent to 300 million, which represents a large quantity. Therefore,
this value will affect the unit chosen.

Approximate Time Frame: 3 – 4 weeks

Terms:

- ✓ base
- ✓ exponent
- ✓ power

- \checkmark order of operations
- \checkmark scientific notation
- ✓ magnitude

Resources

MGH – McGraw Hill, Glencoe Math (2015) ML – McDougal Littell, Pre-Algebra Book; Larson, 2005 EX – Explorations in Core Math (Holt McDougal) NY – *Engage* New York MAP – Math Assessment Project (MARS)

	Suggested Topics for Lessons	Possible Resources
8.EE.A.1	Integer Exponents	 MGH 1.2 Powers and Exponents (page 15) ML 1.2 Powers and Exponents (page 10) EX 3-1 Integer Exponents (page 83) Learn Zillion Video Lessons: Evaluate expressions with Exponents NY Module 1 Lesson 1: Exponential Notation
8.EE.A.1	Properties of Exponents SBAC Evidence—The student: 1. Generates equivalent numerical expressions by applying the properties of integer exponent.	 MGH 1.3 Multiply and Divide Monomials (page 23) MGH 1.4 Powers of Monomials (page 31) MGH 1.5 Negative Exponents (page 43) ML 4.5 Rules of Exponents (page 194) ML 4.6 Negative and Zero Exponents (page 199) EX 3-2 Properties of Exponents (page 87) MAP: Applying Properties of Exponents Learn Zillion Video Lessons: Know/apply properties of integer exponents NY Lesson 2: Multiplication of Numbers in Exponential Form Learn Zillion Video Lessons: Understand negative exponents and bases NY Lesson 3: Numbers in Exponential Form Raised to a Power NY Lesson 4: Numbers Raised to the Zeroth Power NY Lesson 5: Negative Exponents and the Law of Exponents
8.EE.A.3	Scientific Notation SBAC Evidence—The student: 4. States how many times as large or as small one number, written as a single digit times a power of 10, is than another, to estimate very large or very small quantities.	 MGH 1.6 Scientific Notation (page 51) ML 4.7 Scientific Notation (page 204) EX 3-3 Scientific Notation (page 93) VA Lesson: Scientific Notation Learn Zillion Video Lessons: Understand scientific notation Learn Zillion Video Lessons: Estimate and compare with integers to the power of 10 University of Wyoming Lesson: Scientific Notation NY Lesson 7: Magnitude NY Lesson 9: Scientific Notation
8.EE.A.4	Operating with Scientific Notation SBAC Evidence—The student: 5. Performs operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used.	 MGH 1.7 Compute with Scientific Notation (page 59) MGH 1.7, Inquiry Lab, Scientific Notation Using Technology (page 67) ML 4.7 Using Scientific Notation Tech Activity (page 209) EX 3-4 Operating with Scientific Notation (page 99) MAP: Estimating Length Using Scientific Notation Learn Zillion Video Lessons: Perform operations with numbers in scientific notation Foldable: Operations with Numbers in Scientific Notation NY Lesson 8: Estimating Quantities

NY Lesson 10: <u>Operations with Numbers in Scientific</u>
<u>Notation</u>
NY Lesson 11: <u>Efficacy of the Scientific Notation</u>
➢ NY Lesson 12: <u>Choice of Unit</u>
NY Lesson 13: Comparison of Numbers Written in
Scientific Notation; Using Technology

