Vector Activity - Extension

Dominoes are placed end to end to form a chain. Tape or glue onto a separate piece of paper.

Start: A = (4, -3) B = (5, -1) C = (-1, -2)	$\overrightarrow{AB} =$	$\langle -1, -2 \rangle$	magnitude of $\overrightarrow{AB} =$
$\langle 1, 2 \rangle$	$\overrightarrow{BC} =$	7/5	magnitude of \overrightarrow{AC} =
$\langle -6, -1 \rangle$	$\overrightarrow{AC} =$	$\sqrt{26}$	magnitude of \overrightarrow{BC} =
$\langle -5, 1 \rangle$	$\overrightarrow{CA} =$	√37	A vector perpendicular to $\overrightarrow{AB} =$
	,	,	
$\langle 5, -1 \rangle$	$\overline{CB} =$	$\langle -2, 1 \rangle$	A vector perpendicular to $\overrightarrow{BC} =$

$\langle 1, 5 \rangle$	the cosine of the acute angle between AB and BC =	$\langle 2, -1.5 \rangle$	The position vector of the point which divides the line BC in the ratio 1:2 =
$\frac{8}{\sqrt{185}}$	the cosine of the acute angle between AC and BC =	$\left\langle 3, -\frac{4}{3} \right\rangle$	The position vector of the point which divides the line AB in the ratio $2:1$
$\frac{29}{\sqrt{962}}$	the cosine of the acute angle between AB and AC =	$\left\langle \frac{14}{3}, -\frac{5}{3} \right\rangle$	The position vector of the point which divides the line BC in the ratio 2:3 -
$\frac{3}{\sqrt{130}}$	The position vector of the midpoint of the line $AB =$	$\left\langle \frac{13}{5}, -\frac{7}{5} \right\rangle$	The position vector of the point which divides the line AC in the ratio $1:2$
$\langle 4.5, -2 \rangle$	The position vector of the midpoint of the line $AC =$	$\left\langle \frac{7}{3}, -\frac{8}{3} \right\rangle$	The position vector of the point which divides the line CA in the ratio 1:3 -
$\langle 1.5, -2.5 \rangle$	The position vector of the midpoint of the line $BC =$	$\left\langle \frac{1}{4}, -\frac{9}{4} \right\rangle$	Finish

SOLUTION:

					Start: $A = (4, -3)$ $B = (5, -1)$ $C = (-1, -2)$ $AB = AB = AB$
$\overrightarrow{CA} =$	$\langle -5, 1 \rangle$	\overrightarrow{AC} =	$\langle -6, -1 \rangle$	$\overrightarrow{BC} =$	$\langle 1, 2 \rangle$
$\langle 5, -1 \rangle$					
$\overrightarrow{CB} =$					
⟨6, 1⟩	$\overrightarrow{BA} =$	$\langle -1, -2 \rangle$	magnitude of \overrightarrow{AB} =	$\sqrt{5}$	magnitude of \overrightarrow{AC} =
					$\sqrt{26}$
					magnitude of \overrightarrow{BC} =
A vector peopenticular to AC =	$\langle 1, -6 \rangle$	A rector perpendicular to SC =	$\langle -2, 1 \rangle$	A rector perpendicular to AB=	$\sqrt{37}$