

Name_____ Period____ Date____

NON-CALCULATOR SECTION

Vocabulary: Define each word and give an example.

- 1. Rational Exponent
- 2. Root Index
- 3. One-to-One Function

Short Answer:

- 4. How can we verify inverse functions graphically?
- 5. Describe how *a*, *h* and *k* affect the graph of the function: $f(x) = a\sqrt{x-h} + k$?

Review:

- 6. Solve the equation: $\frac{x+12}{3} = \frac{2x+3}{x+2}$
- 7. Factor completely: $4t^6 20t^4 + 24t^2$
- 8. Using degree and the sign of the leading coefficient, describe the end behavior of the following polynomial: $f(x) = -5x^5 + 2x^3 x^2 + 3x 1$
- 9. Identify the vertical and horizontal asymptotes of the function: $f(x) = \frac{2x^2}{x^2 9}$

Problems:

- **Be sure to show all work used to obtain your answer. Circle or box in the final answer.**
- 10. Evaluate the expression:

a.
$$(\sqrt[3]{-64})^4$$

b.
$$25^{\frac{3}{2}}$$

$$c. \left(\frac{1}{216}\right)^{-1/3}$$

11. Simplify the expression. Assume all variables are positive.

a.
$$\sqrt[3]{54} + \sqrt[3]{2}$$

b.
$$\left(\frac{20^{\frac{1}{2}}}{5^{\frac{1}{2}}}\right)^3$$

c.
$$\sqrt{\frac{80x^3y^2}{9xz^3}}$$

d.
$$\left(\sqrt{2}-3\sqrt{3}\right)\left(\sqrt{8}+2\sqrt{3}\right)$$

12. Solve the equations:

a.
$$x-3 = \sqrt{30-2x}$$

b.
$$\sqrt{5x+3} = \sqrt{3x+7}$$

c.
$$\sqrt{x+2} = 2 - \sqrt{x}$$

d.
$$9+5(2m)^{\frac{1}{3}}=29$$

e.
$$-54 = 10 - (m-10)^{\frac{3}{2}}$$

f.
$$-4\sqrt[3]{x+10}+3=15$$

Unit 4

13. a) Find an equation for the inverse of the function: f(x) = 2x - 3

- b) Verify graphically that the two functions are inverses.
- 14. Verify algebraically that the following functions are inverses.

$$f(x) = 2x^3 - 1$$
 and $g(x) = \sqrt[3]{\frac{x+1}{2}}$

15. Graph the radical functions. Also, state the domain and range

a.
$$y = 3\sqrt[3]{x+4} - 1$$

b.
$$y = -2\sqrt{x-3} + 2$$

D:

R:

R:

16. Describe the transformations performed on $f(x) = \sqrt{x}$ to

transform it to $g(x) = \frac{1}{2}\sqrt{x-2} + 4$ and then graph it.

MULTIPLE CHOICE QUESTIONS

What is the simplified form of the expression $\sqrt[3]{4a^6} + a\sqrt[3]{108a^3}$? 17.

A.
$$4a^2\sqrt[3]{4}$$

c.
$$2a^2\sqrt[3]{14}$$

B.
$$2a^2 + 3a\sqrt[3]{4}$$

D.
$$2a^3 + 6a^2 \sqrt[3]{3a}$$

Which is the inverse of the function $y = -2x^5 + 10$? 18.

A.
$$y = \sqrt[5]{5 - \frac{1}{2}x}$$

C.
$$y = \sqrt[5]{2x} - 20$$

B.
$$y = 20 - \sqrt[5]{2x}$$

D.
$$y = \sqrt[5]{\frac{1}{2}x - 5}$$

19. The graph of which function is shown?

$$A. y = \sqrt[3]{x+3}$$

C.
$$y = \sqrt[3]{x-3}$$

$$y = \sqrt[3]{x} + 3$$

D.
$$y = \sqrt[3]{x} - 3$$

Period_____ Date____ Name_____

CALCULATOR SECTION

- 1. Find the approximate value of $\sqrt[5]{52}$.

 2. Solve the equation $\frac{1}{3}x^2 8 = \sqrt{x-2}$ by graphing.

3. You have a beach ball that has a volume of approximately 7240 cubic inches. Find the radius of the beach ball. (HINT: Use the formula $V = \frac{4}{3}\pi r^3$ for the volume of a sphere.)

- 4. The formula $S=2\pi\sqrt{\frac{L}{32}}$ represents the swing of a pendulum. S is the time in seconds to swing back and forth, and L is the length of the pendulum in feet.
 - a) How long does it take for a 3 foot pendulum to swing back and forth? (Round to three decimal places)

b) Solve the formula for L.

c) Find the length of a pendulum that makes one swing in 2.5 seconds. (Round to three decimal places)