

Directions: Each section below represents a specific shift of the graph of $y = \sqrt{x}$. Graph each equation given on the same graph as $y = \sqrt{x}$ using your graphing calculator. The graph of $y = \sqrt{x}$ has been provided for you. Sketch a picture on the graphs provided and label each graph with its corresponding equation. Then, explain how the graph differs from the graph of $y = \sqrt{x}$, using your graphs to justify your reasoning.

Describe how this graph differs from $y = \sqrt{x}$.

Describe how this graph differs from $y = \sqrt{x}$.

Describe how this graph differs from $y = \sqrt{x}$.

Describe how this graph differs from $y = \sqrt{x}$.

Describe how this graph differs from $y = \sqrt{x}$.

Describe how this graph differs from $y = \sqrt{x}$.

Describe how this graph differs from $y = \sqrt{x}$.

Describe how this graph differs from $y = \sqrt{x}$.

Describe how this graph differs from $y = \sqrt{x}$.

Describe how this graph differs from $y = \sqrt{x}$.

$$y = \sqrt{\frac{1}{2}}x$$

Describe how this graph differs from $y = \sqrt{x}$.

Describe how this graph differs from $y = \sqrt{x}$.

Describe how this graph differs from $y = \sqrt{x}$.

Describe how this graph differs from $y = \sqrt{x}$.

Using the graphs above, explain what effect a, b, h, and k in the equation

$$y = a\sqrt{(bx - h)} + k$$
 have on the graph of $y = \sqrt{x}$.

Using the information gathered about $y = \sqrt{x}$, explain how each of the functions below will differ from the graph of $y = \sqrt[3]{x}$.

1.
$$y = -\frac{3}{4}\sqrt{x-5} + 8$$
 2. $y = \sqrt{4x+1} - 2$ 3. $y = 5\sqrt{-x+7}$

$$2. \ y = \sqrt{4x + 1} - 2$$

3.
$$y = 5\sqrt{-x + 7}$$

Write an equation that matches each description.

4. A cube root function that has been reflected across the y-axis, translated 4 units right and 2 units down.

5. A square root function that has been reflected across the x-axis and has been translated up 9 units.

6. A square root function that has been reflected across the x-axis, has been vertically stretched by a factor of 2, and has been translated 1 unit left and three units up.

Using transformations, graph the following.

$$2. \ y = -\sqrt[3]{x - 2} + 4$$

$$1. \ y = \sqrt{-x} - 3$$

$$4. \ \ y = -\sqrt[3]{x+4} - 5$$

