Pre-Algebra, Unit 12 Practice Test: Transformations & Similarity

Name:

Date:

- 1. Define the terms below. Sketch an example for (a).
 - a. dilation
 - b. scale factor
- 2. a) Two figures that have the same shape but different sizes are called _____.
 - b) Two figures are similar if and only if they have all their corresponding _____are congruentand all their corresponding _____are proportional.
- 3. (SE/SBAC) The vertices of a polygon are given. Draw the polygon. Then find the coordinates of the vertices of the image after a dilation having the scale factor of 3. Draw the image.

$$A(-1, 1), B(2, 1), C(3,-2), D(-3,-3)$$

- 4. (SE) Which series of transformations will create similar—not congruent—figures?
 - (A) Rotation and Translation
 - (B) Reflection and Rotation
 - (C) Reflection and Dilation
 - (D) Reflection and Translation

5. (SE) $\triangle ABC$ is similar to $\triangle DEF$. Which statement(s) is (are) true?

- (A) The perimeter of $\triangle ABC = 90$
- (B) AB = 12
- (C) The area of $\triangle ABC = 540$
- (D) AC = 39
- 6. (SE) $\triangle ABC \sim \triangle DEF$, $\overline{AC} = 5$, $\overline{DF} = 2.5$, $\overline{BC} = 3$.

What is the length of \overline{EF} ?

- (A) 1 unit
- (B) 1.5 units
- (C) 2.5 units
- (D) 3 units
- 7. (SE) The four triangles below are *not* drawn to scale. Based on the given information, which pair of triangles are similar?

- (A) I and II
- (B) II and IV
- (C) I and III
- (D) I, III, and IV
- 8. (SE) The same figure is transformed using two different transformations. Which of the statements that follow are true?

Transformation 1:
$$(x, y) \rightarrow (x-2, y-2)$$
 Transformation 2: $(x, y) \rightarrow (4x, 4y)$

- (A) The image in Transformation 2 has a perimeter that is 4 times greater than the perimeter of the image in Transformation 1.
- (B) The image in Transformation 1 has an area that is 16 times greater than the image in Transformation 2.
- (C) The image in Transformation 2 moves the original image 2 units in each direction.
- (D) All but one of the vertices in the image of Transformation 1 is different from the original.

9. (SE) What is the scale factor of the dilation that maps $\Delta ABC \rightarrow \Delta A'B'C'$?

- (B) 3
- (C) $\frac{1}{2}$
- (D) 2

10. Given $\triangle ABC \sim \triangle UVW$. Name the corresponding sides.

11. (SE) Triangle *ABC* is similar to triangle *KLM* where the ratio of proportionality is $\frac{1}{6}$, and AB = 24 centimeters. What is the measurement of \overline{KL} ?

(D) 144 cm

12. (SE) Triangles ABC and DEF are similar. What is the measure of angle E?

$$(A)$$
 35°

$$(C)$$
 65°

(D) 180°

13. (SBAC) A sequence of transformations is applied to a polygon. Identify each sequence of transformations where the resulting polygon has a greater area than the original polygon.

A) Reflect over the x-axis, dilate about the origin by a scale factor of $\frac{1}{2}$, translate up 5 units

B) Rotate 90° counterclockwise around the origin, dilate about the origin by a scale factor of $\frac{3}{2}$

C) Dilate about the origin by a scale factor of $\frac{2}{3}$, rotate 180° clockwise around the origin, translate down 2 units

D) Dilate about the origin by a scale factor of 2, reflect over the y-axis, dilate about the origin by a scale factor of $\frac{2}{3}$

14. A transformation is applied to $\triangle ABC$ to form $\triangle DEF$ (not shown). Then, a transformation is applied to $\triangle DEF$ to form $\triangle GHJ$.

Part A Graph $\triangle DEF$ on the xy-coordinate plane.

Part B Describe the transformation applied to $\triangle ABC$ to form $\triangle DEF$.

Part C Describe the transformation applied to ΔDEF to form ΔGHJ .

Part D Select one statement that applies to the relationship between ΔGHJ and ΔABC .

- \triangle \triangle AGHJ is congruent to \triangle ABC.
- \square \triangle GHJ is similar to \triangle ABC.
- \square \triangle GHJ is neither congruent nor similar to \triangle ABC

Explain your reasoning.

