Precalculus Notes: Unit 3 – Exponential and Logarithmic Functions

Syllabus Objective: 9.1 – The student will sketch the graph of an exponential, logistic, or logarithmic function. 9.2 – The student will evaluate exponential or logarithmic expressions.

Exponential Function: a function of the form \(f(x) = a \cdot b^x \); \(a \neq 0, b \neq 1, b > 0 \)

- \(a \): initial value (y-intercept); \(f(0) = a b^0 = a \)
- \(b \): base

Evaluating an Exponential Function

Ex: Determine the value for \(f(x) = 3 \cdot 4^x \).

\(f(3) = 3 \cdot 4^3 = 3 \cdot 64 = 192 \)

\(f(-2) = 3 \cdot 4^{-2} = 3 \cdot \frac{1}{4^2} = \frac{3}{16} \)

\(f\left(\frac{1}{2}\right) = 3 \cdot 4^{\frac{1}{2}} = 3 \cdot \sqrt{4} = 3 \cdot 2 = 6 \)

Writing an Exponential Function Given the Initial Value

Ex: Find an exponential function that contains the points \((0, 3)\) and \((2,12)\).

Initial Value: \(a = 3 \) \(y = a \cdot b^x \)

Substitute \(a = 3 \) and \((x, y) = (0, 3)\) to find \(b \).

\[12 = 3 \cdot b^2 \quad \Rightarrow \quad 4 = b^2 \quad \Rightarrow \quad b = \pm 2 \]

Note: As stated above, \(b > 0 \), so we will use only \(b = 2 \). \[y = 3 \cdot 2^x \]

Writing an Exponential Function Given Two Points

Ex: Find an exponential function that contains the points \((1,12)\) and \((2,36)\).

Substitute each point into \(y = a \cdot b^x \) for \(x \) and \(y \).

\[12 = a \cdot b^1 \quad \Rightarrow \quad 36 = a \cdot b^2 \]

Divide the two equations to eliminate \(a \).

\[\frac{36}{12} = \frac{a \cdot b^2}{a \cdot b^1} \quad \Rightarrow \quad 3 = b \]

Substitute this value for \(b \) to solve for \(a \).

\[12 = a \cdot 3^1 \quad \Rightarrow \quad 4 = a \]

Solution: \[y = 4 \cdot 3^x \]

Note: Another method for solving the system of equations above is to solve for \(a \) and use the substitution method.
Writing an Exponential Function Given a Table of Values

Ex: Determine a formula for the table of values.

<table>
<thead>
<tr>
<th>x</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>63</td>
<td>21</td>
<td>7</td>
<td>7/3</td>
</tr>
</tbody>
</table>

Check for a common ratio \(b \): \(b = \frac{1}{3} \)

Initial Value \((a)\): value of \(y \) when \(x = 0 \): \(a = 7 \)

Solution: \(y = 7 \left(\frac{1}{3} \right)^x \)

Note: If the table did not give the initial value, then we can use one of the points given for \(x \) and \(y \), and \(b = \frac{1}{3} \) in the equation \(y = a \cdot b^x \) to solve for \(a \).

Challenge Problem: Find \(f \) such that \(f(m + n) = f(m) \cdot f(n) \) for all \(m \) and \(n \).

Students should recall that when multiplying exponentials with the same base, the exponents are added. So it should make sense to hypothesize that an exponential function would work for \(f \).

Try a specific example: \(f(x) = 2^x \), with \(m = 3 \), \(n = 2 \).

\[
\begin{align*}
 f(m+n) &= f(3+2) = f(5) \\
 f(m) \cdot f(n) &= f(3) \cdot f(2) = 8 \cdot 4 = 32 \\
 f(5) &= 2^5 = 32 \\
 f(3) &= 2^3 = 8 \\
 f(2) &= 2^2 = 4
\end{align*}
\]

Possible Solution: \(f(x) = 2^x \)
Graphs of Exponential Functions

Ex: Plot points and graph the functions \(y_1 = 3^x \) and \(y_2 = \frac{1}{3^x} \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>(-2)</th>
<th>(-1)</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_1)</td>
<td>(\frac{1}{9})</td>
<td>(\frac{1}{3})</td>
<td>1</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>(y_2)</td>
<td>9</td>
<td>3</td>
<td>1/3</td>
<td>1/9</td>
<td></td>
</tr>
</tbody>
</table>

Exponential Growth
Exponential Decay

Note: Each of the graphs above have a horizontal asymptote at \(y = 0 \).

Graphs of Exponential Functions: Graph is INCREASING when \(b > 1 \) & \(a > 0 \); graph is DECREASING when \(0 < b < 1 \) & \(a > 0 \).

Transformations of Exponential Functions: \(y = a \cdot b^{(x-h)} + k \)

Vertical Stretch: \(|a| > 1\)
Vertical Shrink: \(|a| < 1\)

Reflection over \(x \)-axis: \(-a \)
Reflection over \(y \)-axis: \(-x \)

Horizontal Translation: \(h \)
Vertical Translation: \(k \)

Horizontal Asymptote: \(y = k \)

Ex: Graph the exponential function \(y = 3^{(1-x)} + 2 \).

Transformation of \(y = 3^x \). Rewrite as \(y = 3^{-x+1} + 2 \).

Horizontal Translation: right 1
Reflect over \(y \)-axis.
Vertical Translation: up 2

\(y \)-intercept: \(f(0) = 3^1 + 2 = 5 \)
Horizontal Asymptote: \(y = 2 \)
Exponential Model: \(y = ab^x \)

- Exponential Growth: \(a > 0 \) & \(b > 1 \); \(b \) is the **growth factor**
- Exponential Decay: \(a > 0 \) & \(b < 1 \); \(b \) is the **decay factor**

Applications of the Exponential Model

Ex: CCSD’s student population went from 20,420 in 1956 to 291,510 students in 2005. Write an exponential function that represents the student population. Predict the population in 2010.

Let \(x = 0 \) represent the year 1950 and \(y \) represent the number of students.

Substitute the given values into the exponential model \(y = ab^x \) and solve for \(a \) and \(b \).

\[
\frac{291510}{20420} = a \cdot b^{55} \quad \text{and} \quad \frac{1}{b} = 1.056
\]

\[
20420 = a \cdot (1.056)^6 \Rightarrow a \approx 14725.7
\]

\[
y = 1475.57 \cdot 1.056 \Rightarrow y = 1475.57 \cdot 1.056 \approx 387,175 \text{ students}
\]

Compound Interest:

\[
A = P \left(1 + \frac{r}{n}\right)^{nt}
\]

\(A \) = balance amount \(P \) = principal (beginning) amount

\(r \) = annual interest rate (decimal) \(n \) = # of times compounded in a year \(t \) = time in years

Note:
- Annually = 1 time per year
- Semiannually = 2 times per year
- Quarterly = 4 times per year
- Monthly = 12 times per year
- Weekly = 52 times per year

Ex: Calculate the balance if \$3000 is invested for 10 years at 6\% compounded weekly.

\[
\begin{align*}
A &= P \left(1 + \frac{r}{n}\right)^{nt} \\
&= 3000 \left(1 + \frac{0.06}{52}\right)^{52 \cdot 10} \\
&\approx \$5464.47
\end{align*}
\]

Isolating the change in the compounding period reveals a naturally occurring constant. Let the compounding period \((n) \) be equal to some constant \((m) \) multiplied by the rate: \(n = mr \).

\[
A = P \left(1 + \frac{r}{mr}\right)^{mrt} = P \left(1 + \frac{1}{m}\right)^{mr} = P \left[\left(1 + \frac{1}{m}\right)^{m}\right]^{rt}
\]

Graph \(y = \left(1 + \frac{1}{m}\right)^{m} \) and find \(\lim_{m \to \infty} \left(1 + \frac{1}{m}\right)^{m} \). Make a table.

The values of \(y \) are approaching 2.7183. This is the approximate value of the transcendental number \(e \).
Natural Base e:
$$e = \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x \approx 2.7182818$$

Interest Compounded Continuously:
$$A = Pe^{rt}$$

Natural Exponential Function:
$$f(x) = a \cdot e^{kx}$$

Graph of $y = e^x$:

Logistic Function:
$$f(x) = \frac{c}{1 + a \cdot e^{bx}}$$

c (constant): limit to growth (maximum)

The logistic function is used for populations that will be limited in their ability to grow due to limited resources or space.

Think About It: What would limit population growth?

Example: Estimate the maximum population for Dallas and find the population for the year 2008 given the function
$$P(t) = \frac{1,301,642}{1 + 21.602e^{-0.05054t}}$$

that models the population from 1900.

Maximum population:
$$c = 1,301,642$$

Population in 2008:
$$t = 108 \quad P(108) = \frac{1,301,642}{1 + 21.602e^{-0.05054(108)}} \approx 1,191,936$$

Graph of a Logistic Function:
$$f(x) = \frac{1}{1 + e^{-x}}$$

Domain: All Reals
Range: $(0,1)$
Always Increasing
Horizontal Asymptotes: $y = 0, y = 1$
Ex: Sketch the graph of the function. State the y-intercept and horizontal asymptotes.

$$y = \frac{3}{1 + 2 \cdot 0.4^x}$$

y-intercept: $y(0) = \frac{3}{1 + 2 \cdot 0.4^0} = \frac{3}{1 + 2} = 1$

H.A.: $y = 0, y = 3$

You Try: Describe the transformations needed to draw the graph of $f(x) = -3 \cdot 2^{x+1} - 4$. Sketch the graph.

QOD: Using a table of values, how can you determine whether they have an exponential relationship?
Syllabus Objectives: 9.7 – The student will solve application problems involving exponential and logarithmic functions. 9.4 – The student will solve exponential, logarithmic and logistic equations and inequalities.

Exponential Model: \(P(t) = P_0 b^t \)
- \(P(t) \): population at time \(t \)
- \(P_0 \): initial population

Growth Model: \(b = 1 + r \); \(b \) is called the Growth Factor

Decay Model: \(b = 1 - r \); \(b \) is called the Decay Factor

Ex: Write an exponential function that models the population of Smallville if the initial population was 2,853, and it is decreasing by 2.3% each year. Predict how long it will take for the population to fall to 2000.

\[P_0 = 2853 \quad r = 0.023 \, \text{, so } b = 1 - 0.023 = 0.977 \]

\[P(t) = 2853(0.977)^t \]

Solve for \(t \) when \(P(t) = 2000 \).

\[2000 = 2853(0.977)^t \]

It will take about 15.266 years.

Ex: The population of ants is increasing exponentially such that on day 2 there are 100 ants, and on day 4 there are 300 ants. How many ants are there on day 5?

Use \(P(t) = P_0 b^t \) and write a system of equations with the given information:

\[\begin{align*}
100 &= P_0 b^2 \\
300 &= P_0 b^4
\end{align*} \]

Solve the system by dividing the equations:

\[\frac{300}{100} = \frac{P_0 b^4}{P_0 b^2} \quad \Rightarrow \quad 3 = b^2 \quad \Rightarrow \quad b = \sqrt{3} \approx 1.732 \]

\[100 = P_0 b^2 \quad \Rightarrow \quad 100 = P_0 (\sqrt{3})^2 \quad \Rightarrow \quad 100 = 3 P_0 \quad \Rightarrow \quad P_0 = \frac{100}{3} \]

\[P(t) = \frac{100}{3} (\sqrt{3})^t \quad \Rightarrow \quad P(5) = \frac{100}{3} (\sqrt{3})^5 \approx 519 \text{ ants} \]

Note: Students could have called day 2 \(t = 0 \) to come up with the same solution.

Exponential Regression

Ex: Find an exponential regression for the population of Las Vegas using the table below. Then predict the population in 2009.

<table>
<thead>
<tr>
<th>Year</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>1940</td>
<td>8,422</td>
</tr>
<tr>
<td>1950</td>
<td>24,624</td>
</tr>
<tr>
<td>1970</td>
<td>125,787</td>
</tr>
<tr>
<td>1990</td>
<td>258,295</td>
</tr>
<tr>
<td>2004</td>
<td>534,847</td>
</tr>
</tbody>
</table>

2009: 896,767
Radioactive Decay: the process in which the number of atoms of a specific element change from a radioactive state to a nonradioactive state

Half-Life: the time it takes for half of a sample of a radioactive substance to change its state

Ex: The half-life of radioactive Strontium is 28 days. Write an equation and predict the amount of a 50 gram sample that remains after 100 days.

Use $P(t) = P_0 b^t$: Solve for b when $P_0 = 1$, $P = 0.5$, and $t = 28$.

$$0.5 = 1 b^{28} \Rightarrow b = (0.5)^{\frac{1}{28}} \Rightarrow b \approx 0.9755 \quad \text{Equation:} \quad P(t) = P_0 (0.9755)^t$$

50-gram sample remaining after 100 day: $$P(t) = 50 (0.9755)^{100} \approx 4.185 \text{ grams}$$

Writing a Logistic Function

Ex: Find a logistic function that satisfies the given conditions: Initial value = 40; limit to growth = 100; passes through the point $(1,10)$.

$$f(x) = \frac{c}{1 + a \cdot b^x} \quad c = 100, \ a = 40 \quad (x, y) = (1,10) \quad b = ?$$

$$10 = \frac{100}{1 + 40b} \Rightarrow 10 + 400b = 100 \Rightarrow 400b = 90 \Rightarrow b = \frac{9}{40}$$

$$f(x) = \frac{100}{1 + 40 \cdot \left(\frac{9}{40}\right)^x}$$

You Try: Complete the table.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Half-Life (years)</th>
<th>Initial Quantity</th>
<th>Amount After 1000 Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>14C</td>
<td>5730</td>
<td>5 grams</td>
<td></td>
</tr>
<tr>
<td>14C</td>
<td>5730</td>
<td></td>
<td>0.7 gram</td>
</tr>
<tr>
<td>226Ra</td>
<td>1600</td>
<td>100 grams</td>
<td></td>
</tr>
</tbody>
</table>

QOD: Explain how to determine if an exponential function is a growth or decay model.
Syllabus Objective: 9.1 – The student will sketch the graph of an exponential, logistic or logarithmic function. 9.2 – The student will evaluate exponential or logarithmic expressions. 9.5 – The student will graph the inverse of an exponential or logarithmic function.

Review: Solve the following for x.
1. $10^x = 1000$
 $x = 3$
2. $10^x = 0.01$
 $x = -2$
3. $10^x = 100\sqrt{10}$
 $x = 5/2$
4. $10^x = \frac{1}{\sqrt{100}}$
 $x = -\frac{2}{3}$

Exploration: Use your calculator to write 1997 as a power of 10.

Note: $1000 = 10^3$, $10000 = 10^4$
Try $10^{3.1} \approx 1258.9$, $10^{3.2} \approx 1584.9$, $10^{3.3} \approx 1995.3$ (close!)

Now use your calculator to find $\log(1997)$. $\log(1997) \approx 3.300378$ (Compare to above)

Common Logarithm: Given a positive number p, the solution to $10^x = p$ is called the base-10 logarithm of p, expressed as $x = \log_{10} p$, or simply as $x = \log p$. (When no base is specified, it is understood to be base 10.)

A LOGARITHM IS AN EXPONENT.

Logarithm (base b): $y = \log_b x$ (Read as “log base b of x.”) for $x > 0$, $b > 0$ and $b \neq 1$ if and only if $x = b^y$.

Note: You cannot take the log of a negative number!

Ex: Rewrite each equation (exponential form) to logarithmic form.
1. $10^3 = 1000$
 Base (b) = 10
 Exponent = 3
 log$_{10}$ 1000 = 3 or log$_{10}$ 1000 = 3
2. $2^4 = 16$
 Base (b) = 2
 Exponent = 4
 log$_2$ 16 = 4

Ex: Rewrite each equation (logarithmic form) to exponential form.
1. $\log_5 125 = 3$
 Base (b) = 5
 Exponent = 3
 $5^3 = 125$
2. $\log_{10} 100,000 = 5$
 Base (b) = 10
 Exponent = 5
 $10^5 = 100,000$
Evaluating Logarithms: a logarithm is an exponent

Ex: Evaluate the logarithms.

1. \(y = \log_3 81 \) \(3^y = 81 \) \(\boxed{y = 4} \)
2. \(f\left(\frac{1}{16}\right), \ f(x) = \log_4 x \) \(f\left(\frac{1}{16}\right) = \log_4\left(\frac{1}{16}\right) \) \(4^y = \frac{1}{16} \) \(\boxed{y = -2} \)
3. \(y = \log_5 1 \) \(5^y = 1 \) \(\boxed{y = 0} \)
4. \(f(2.2), \ f(x) = \log x \) \(f(x) = \log 2.2 \) Calculator: \(\boxed{f(x) \approx 0.342} \)

Graphing Logarithmic Functions: a logarithmic function is the inverse of an exponential function

Ex: Use a table of values to sketch the graph of \(y = \log_3 x \). Discuss the characteristics of the graph and compare the graph to the graph of \(y = 3^x \).

Note: To create the table, it is helpful to rewrite the function as \(3^y = x \) and choose values for \(y \).

\[
\begin{array}{|c|c|c|c|c|}
\hline
x & 9 & 3 & 1 & 1/3 & 1/9 \\
\hline
y & 2 & 1 & 0 & -1 & -2 \\
\hline
\end{array}
\]

Domain: \((0, \infty)\) Range: \((\infty, \infty)\) Intercepts: \(x - \text{int}: (1,0)\) Asymptote: \(x = 0\)

Increasing: \((0, \infty)\) End Behavior: \(\lim_{x \to 0^-} f(x) = -\infty\) \(\lim_{x \to \infty} f(x) = \infty\)

The function \(y = \log_3 x \) is the inverse of \(y = 3^x \), so its graph is the reflection of \(y = 3^x \) over the line \(y = x \).

Transformations of \(y = \log_b x \):

- Vertical Stretch: \(a, |a| > 1\)
- Horizontal Stretch: \(a, |a| < 1\)
- Reflection over \(x\)-axis: \(-a\)
- Reflection over \(y\)-axis: \(-x\)
- Horizontal Translation: \(h\)
- Vertical Translation: \(k\)
Ex: Describe the transformations used to graph the function \(y = -\log_3(x + 2) - 5 \). Then sketch the graph.
Reflect over \(x \)-axis; shift left 2 units; shift down 5 units

\[
\begin{align*}
\text{Note: Graph in red is the graph of } y &= \log_3 x.
\end{align*}
\]

Properties of Logarithms:
- \(\log_a 1 = 0 \) because \(a^0 = 1 \)
- \(\log_a a = 1 \) because \(a^1 = a \)
- \(\log_a a^x = x \) because \(a^x = a^x \) or \(a^{\log_a x} = x \) (property of inverses)
- If \(\log_a x = \log_a y \), then \(x = y \)

Natural Logarithmic Function: logarithm base \(e \), \(\log_e x \), written \(y = \ln x \)

Notations:
1. \(\log x \) is used to represent \(\log_{10} x \) (common logarithm)
2. \(\ln x \) is used to represent \(\log_e x \) (natural logarithm)

Evaluating Logarithmic Expressions:

Ex: Evaluate \(\log(10^{-2.5}) \) and \(10^{\log 4.1} \).
\[
\begin{align*}
\log(10^{-2.5}) & \quad \text{Let } y = \log(10^{-2.5}). \text{ Rewrite in exponential form: } 10^y = 10^{-2.5} \quad \boxed{y = -2.5} \\
10^{\log 4.1} & \quad \text{Let } y = 10^{\log 4.1}. \text{ Rewrite in logarithmic form: } \log y = \log 4.1 \quad \boxed{y = 4.1}
\end{align*}
\]

Note: By the properties of inverses, we could have evaluated the above examples without rewriting using the following: \(\log_a a^x = x \) and \(a^{\log_a x} = x \)
Solving Logarithmic Equations:

Ex: Solve the equations for \(x \).

1. \(\log_7 x^2 = \log_7 36 \)
 The bases are equal, so \(x^2 = 36 \) \(\Rightarrow x = \pm 6 \).
 Note: Both solutions work in the original equation.

2. \(\log_9 3 = x \)
 Rewrite exponentially: \(9^x = 3 \) \(\Rightarrow x = \frac{1}{2} \)

3. \(\ln e^4 = x \)
 Rewrite exponentially: \(e^x = e^4 \) \(\Rightarrow x = 4 \)
 Note: Remember that the base of \(\ln \) is \(e \).

You Try: Sketch the graph of function on the same grid with its inverse. \(f(x) = \ln x \)

QOD: Can you evaluate the log of a negative number? Explain.
Syllabus Objective: 9.3 – The student will apply the properties of logarithms to evaluate expressions, change bases, and re-express data.

Exploration: Use your calculator to find \(\log 2 \) and \(\log 3 \). Evaluate the following logarithms on your calculator, then speculate how you could calculate them using only the values of \(\log 2 \) and/or \(\log 3 \).

\[
\begin{align*}
\log 2 & \approx 0.301 \quad \text{and} \quad \log 3 \approx 0.477 \\
1. \quad \log 6 &= \log 6 \approx 0.778 \quad 0.778 = 0.301 + 0.477 = \log 2 + \log 3 \\
2. \quad \log 8 &= \log 8 \approx 0.903 \quad 0.903 = 3 \cdot 0.301 = 3 \log 2 \\
3. \quad \log \frac{2}{3} &= \log \frac{2}{3} = -0.176 \quad -0.176 = 0.301 - 0.477 = \log 2 - \log 3 \\
\end{align*}
\]

Recall: Properties of Exponents

\[
b^x \cdot b^y = b^{x+y} \quad \frac{b^x}{b^y} = b^{x-y} \quad (b^x)^y = b^{xy}
\]

Because a logarithm is an exponent, the rules are the same!

Properties of Logarithms:

\[
\log_b (RS) = \log_b R + \log_b S \\
\log_b \left(\frac{R}{S} \right) = \log_b R - \log_b S \\
\log_b (R^c) = c \cdot \log_b R
\]

Ex: Use the properties of logarithms to expand the following expressions.

\[
\begin{align*}
1. \quad \log (5x) &= \log (5) + \log (x) \\
2. \quad \ln \left(\frac{xy}{z} \right) &= \ln (x) + \ln (y) - \ln (z) \\
3. \quad \log_2 \left(\frac{x}{\sqrt{x^2 + 1}} \right) &= \log_2 x - \log (x^2 + 1)^{\frac{1}{2}} = \log_2 x - \frac{1}{2} \log (x^2 + 1) \\
4. \quad \log (200x^2) &= \log (100 \cdot 2) + 2 \log x = \log 100 + \log 2 + 2 \log x = 2 + \log 2 + 2 \log x
\end{align*}
\]
Ex: Use the properties of logarithms to condense the following expressions.

1. \(\log_3 x + \log_3 4 \)
 \(\log_3 x + \log_3 4 = \log_3 (4x) \)

2. \(\log x - 3 \log (x + 1) \)
 \(\log x - 3 \log (x + 1) = \log x - \log ((x + 1)^3) = \log \frac{x}{(x + 1)^3} \)

3. \(2 \ln x - \ln (x + 1) - \ln (x - 1) \)
 \[2 \ln x - \ln (x + 1) - \ln (x - 1) = \ln x^2 - (\ln (x + 1) + \ln (x - 1)) = \ln \frac{x^2}{(x + 1)(x - 1)} = \ln \frac{x^2}{x^2 - 1} \]

Evaluating Logarithmic Expressions with Base \(b \)

Let \(y = \log_b x \). Rewrite in exponential form: \(b^y = x \).

Take the log of both sides. \(\log b^y = \log x \)

Use the properties of logs to solve for \(y \). \(y \log b = \log x \Rightarrow y = \frac{\log x}{\log b} \)

Note: This will work for a logarithm of any base, including the natural log.

Change of Base Formula: \(\log_b a = \frac{\log a}{\log b} = \frac{\ln a}{\ln b} \)

Ex: Evaluate the expression \(\log_3 8 \).

By the change of base formula, \(\log_3 8 = \frac{\log 8}{\log 5} \). Using the calculator, \(\frac{\log 8}{\log 5} \approx 1.292 \)

Ex: Evaluate the expression \(\log_{64} 2 \).

By the change of base formula, \(\log_{64} 2 = \frac{\ln 2}{\ln 64} \). Using the calculator, \(\frac{\ln 2}{\ln 64} \approx 0.167 \)

Note – This did NOT require the use of a calculator! We know that \(64^{\frac{1}{6}} = 2 \). So \(\log_{64} 2 = \frac{1}{6} \)
Graphing Logarithmic Functions on the Calculator

Ex: Graph \(y = \log_3 x \) and \(y = -\log_3 (x + 2) - 5 \) on the same grid on the graphing calculator.

We cannot type in a log base 3 into the calculator, so we must rewrite the functions using the change of base formula.

\[
y_1 = \log_3 x \implies y_1 = \frac{\log x}{\log 3} \quad y_2 = -\log_3 (x + 2) - 5 \implies y_2 = -\frac{\log (x + 2)}{\log 3} - 5
\]

Caution: The graph created by the calculator is misleading at the asymptote!

You Try: Expand the expression using the properties of logarithms. \(\ln \left(\frac{x^3}{yz} \right) \).

QOD: When is it appropriate to use the change of base formula? Explain how to evaluate a logarithm of base \(b \) without the change of base formula.
Precalculus Notes: Unit 3 – Exponential and Logarithmic Functions

Syllabus Objectives: 9.4 – The student will solve exponential, logarithmic and logistic equations and inequalities. 9.6 – The student will compare equivalent logarithmic and exponential equations.

Strategies for Solving an Exponential Equation:
- Rewrite both sides with the same base
- Take the log of both sides after isolating the exponential

Ex: Solve the following exponential equations.
1. \(4^x = 32\) Rewrite with base 2: \((2^2)^x = 2^5 \Rightarrow 2^{2x} = 2^5\)
Both sides have the same base, so the exponents must be equal: \(2x = 5 \Rightarrow x = \frac{5}{2}\)
2. \(8^{3x} = 360\) We cannot rewrite both sides with the same base, so take the log of both sides.
\[\log_8 360 = 3x \cdot \log_8 8 = 3x \]
Solve for \(x\): \(x = \frac{\log 360}{3 \log 8} \Rightarrow x \approx 0.944\)
3. \(7 - 2e^x = 5\) Isolate the exponential: \(-2e^x = -2 \Rightarrow e^x = 1\)
Take the natural log of both sides: \(\ln e^x = \ln 1 \Rightarrow x \ln e = \ln 1 \Rightarrow x = \frac{\ln 1}{\ln e} \Rightarrow x = 0\)

Note: We could have determined that \(x = 0\) immediately using the equation \(e^x = 1\).

Strategies for Solving a Logarithmic Equation:
- Condense any logarithms with the same base using the properties of logs
- Rewrite the equation in exponential form
- Check for extraneous solutions

Ex: Solve the following logarithmic equations.
1. \(\ln x - \ln 5 = 0\) Condense: \(\ln \left(\frac{x}{5}\right) = 0\)
Rewrite in exponential form: \(e^0 = \frac{x}{5}\)
Solve for \(x\): \(1 = \frac{x}{5} \Rightarrow x = 5\)
Check: \(\ln 5 - \ln 5 = 0\) \(\Box\)
2. \(\log_x 625 = 4\) Rewrite in exp. form: \(x^4 = 625\)
Take the log of both sides: \(\ln x^4 = \ln 625 \Rightarrow 4 \ln x = \ln 625 \Rightarrow \ln x = \frac{\ln 625}{4}\)
Rewrite in exponential form: \(x = e^{\frac{\ln 625}{4}} \Rightarrow x = 5\)
Note: We could have determined that \(x = 5\) immediately using the equation \(x^4 = 625\), by taking the 4\(^{th}\) root of each side.
3. \(\log_3 (x + \log_3 (x - 8)) = 2 \)
Condense: \(\log_3 \left(x \left(x - 8 \right) \right) = 2 \)

Rewrite in exponential form: \(3^2 = x \left(x - 8 \right) \)

Solve for \(x \): \(9 = x^2 - 8x \Rightarrow x^2 - 8x - 9 = 0 \Rightarrow (x - 9)(x + 1) = 0 \Rightarrow x = -1, 9 \)

Check: \(x = -1 \): \(\log_3 \left(-1 \right) + \log_3 \left(-1 - 8 \right) \neq 2 \) (can’t take the log of a negative!)

\(x = 9 \): \(\log_3, 9 + \log_3, (9 - 8) = 2 + \log_3, 1 = 2 + 0 = 2 \) \(\checkmark \)

\(x = 9 \)

\textbf{Note:} You must check every possible solution for extraneous solutions. All negative answers are not necessarily extraneous!

\textbf{Ex:} Solve the equation \(\log_5 \left(4 - x \right) = 1 \).

Rewrite in exponential form: \(5^1 = 4 - x \)
Solve for \(x \): \(x = -1 \)

Check: \(\log_5 \left(4 - (-1) \right) = \log_5 5 = 1 \) \(\checkmark \)

\(x = -1 \)

\textbf{Ex:} Solve the equation \(\log x^2 = 6 \).

Rewrite using properties of logs: \(2 \log x = 6 \Rightarrow \log x = 3 \)

Rewrite in exponential form: \(10^3 = x \Rightarrow x = 1000 \)

Check: \(\log \left(1000^2 \right) = \log \left(\left(10^3 \right)^2 \right) = \log (10^6) = 6 \) \(\checkmark \)

\textbf{Challenge Problems:} Use your “arsenal” of exponential and logarithmic properties!

\textbf{Ex:} Solve the equation \(2^{2x} - 6(2^x) - 7 = 0 \).

Rewrite the first term: \(\left(2^x \right)^2 - 6 \left(2^x \right) - 7 = 0 \)
Let \(2^x = y \)
Solve for \(y \): \((y - 7)(y + 1) = 0 \) \(\Rightarrow y = -1, 7 \)
Use \(y \) to solve for \(x \): \(2^x = y \)

\(y = -1 \): \(2^x = -1 \) (no solution)

\(y = 7 \): \(2^x = 7 \Rightarrow \log 2^x = \log 7 \Rightarrow x \log 2 = \log 7 \Rightarrow x = \frac{\log 7}{\log 2} \approx 2.807 \)

\(x = 2.807 \)

\textbf{Ex:} Solve the equation \(4^{3x} = 7^{x-1} \).

Take the log of both sides: \(\ln 4^{3x} = \ln 7^{x - 1} \)
Rewrite: \(3x \cdot \ln 4 = \left(x - 1 \right) \ln 7 \)

Solve for \(x \): \(3x \cdot \ln 4 = x \ln 7 - \ln 7 \Rightarrow (3 \ln 4)x - (\ln 7)x = -\ln 7 \Rightarrow x (3 \ln 4 - \ln 7) = -\ln 7 \)

\(x = \frac{-\ln 7}{3 \ln 4 - \ln 7} \Rightarrow x \approx -0.879 \)
Check \(\checkmark \)
You Try: Solve the equation \(\frac{200}{1 + e^{-x}} = 150 \).

QOD: Compare and contrast the methods for solving exponential and logarithmic equations.
Syllabus Objective: 9.7 – The student will solve application problems involving exponential and logarithmic functions.

Newton’s Law of Cooling: The temperature T of an object at time t is $T(t) = T_s + (T_0 - T_s)e^{-kt}$, where T_s is the surrounding temperature and T_0 is the initial temperature of the object.

Ex: A 350°F potato is left out in a 70°F room for 12 minutes, and its temperature dropped to 250°F. How many more minutes will it take to reach 120°F?

Solve for k using the given information: $T(t) = T_s + (T_0 - T_s)e^{-kt}$

$250 = 70 + (350 - 70)e^{-12k} \Rightarrow 180 = 280e^{-12k} \Rightarrow \frac{9}{14} = e^{-12k}$

$\ln\left(\frac{9}{14}\right) = \ln(e^{-12k}) \Rightarrow \frac{9}{14} = -12k \Rightarrow k = \frac{-12}{\ln\left(\frac{9}{14}\right)} \approx 0.0368$

Use k to solve for t:

$120 = 70 + (350 - 70)e^{-0.0368t} \Rightarrow \frac{50}{28} = e^{-0.0368t} \Rightarrow \ln\left(\frac{5}{28}\right) = -0.0368t \Rightarrow t \approx 46.8$

It takes about 46.8 minutes for the potato to cool to 120°F. This is 46.8 – 12 = 35.8 minutes longer.

Formula for Compound Interest: $A = P\left(1 + \frac{r}{n}\right)^{nt}$

$A = \text{balance} \quad r = \text{annual interest rate} \quad P = \text{principal} \quad t = \text{time in years} \quad n = \text{number of times interest is compounded each year}$

Interest Compounded Continuously: $A = Pe^{rt}$

Ex: How long will it take for an investment of $2,000 at 6% compounded semi-annually to reach $5000?

$A = P\left(1 + \frac{r}{n}\right)^{nt}$

$5000 = 2000\left(1 + \frac{0.06}{2}\right)^{2t} \Rightarrow \frac{5}{2} = 1.03^{2t} \Rightarrow \ln\left(\frac{5}{2}\right) = 2t \ln 1.03 \Rightarrow \frac{5}{2} = 2t \cdot \ln 1.03$

$t = \frac{\ln\left(\frac{5}{2}\right)}{2 \ln 1.03} \approx 15.499 \quad \text{It will take about 15.5 years.}$
Ex: How long will it take for an investment of $2,000 at 6% compounded continuously to reach $5,000?

\[A = Pe^{rt} \quad 5000 = 2000e^{0.06t} \Rightarrow \ln \frac{5}{2} = \ln e^{0.06t} \Rightarrow 0.06t = \ln \frac{5}{2} \Rightarrow t = \frac{\ln \frac{5}{2}}{0.06} \approx 15.27 \]

It will take about 15.27 years.

Annual Percentage Yield (APY): the rate, compounded annually \((t = 1)\), that would yield the same return

For \(A = P \left(1 + \frac{r}{n} \right)^n \), \(\text{APY} = \left(1 + \frac{r}{n} \right)^n - 1 \)

Ex: An amount of $2,400 is invested for 8 years at 5% compounded quarterly. What is the equivalent APY?

\[\text{APY} = \left(1 + \frac{r}{n} \right)^n - 1 = \left(1 + \frac{0.05}{4} \right)^4 - 1 \approx 0.0509 \approx 5.09\% \]

You Try: Determine the amount of money that should be invested at 9% interest compounded monthly to produce a balance of $30,000 in 15 years.

QOD: Why is using the annual percentage yield a more “fair” way to compare investments?