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Syllabus Objective: 1.1 – The student will calculate limits using the basic limit theorems. 
 
LIMITS – how the outputs of a function behave as the inputs approach some value 

 Notation: “The limit as x approaches c of f(x)” lim ( )
x c

f x
   

Finding a Limit 

I. Table 

Ex1: 
0

sin
lim
x

x

x
    

Use the table to choose values of x close to zero (from the left and right).   

 

As x approaches 0, it appears the function is approaching 1. 

Note:  Existence at the point is not relevant when calculating a limit. 

0

sin
lim 1
x

x

x
   Note: “Special Limit” – must memorize! 

  

II. Graphically 

Ex2: 
2

2

4
lim

2x

x

x




 

Graph the function and use the TRACE feature to see function values as we approach 2 from the 
left and right. 

 

As x approaches 2, it appears the function is approaching 4. 

2

2

4
lim 4

2x

x

x





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III. Analytically 
 
a. Direct Substitution 

Ex3: 
2

2

2 8
lim

2x

x x

x

 


 

Substitute 2x   into the function: 
   22

2

2 2 2 82 8
lim 2

2 2 2x

x x

x

  
 

 
 

b. Algebraic Manipulation 

Ex4: 
2

3

9
lim

3x

x

x




 

We cannot use direct substitution, because of division by zero.  So we must simplify the 
function algebraically. 

   2

3 3

3 39
lim lim

3x x

x xx

x 

 


  3x 
   

3
lim 3 3 3 6
x

x


       

Ex5:  
0

1
lim
x

x

x


 

We cannot use direct substitution, because of division by zero.  Simplify the function 
algebraically by rationalizing the numerator. 

 0 0 0

1 1 1 1 1 1
lim lim lim

1 1 1 1x x x

x x x x

x x x x  

      
  

    x  

0

1 1

1 1 1
lim

21 1 1 0 1x

x

x

 

 
   

   

 

Nonexistent Limit 

 Ex6: 

3

3

1
lim

3x

x

x




 

 We cannot use direct substitution, because of division by zero.  Factoring the numerator, we have: 

 
   23

3 3

1 11
lim lim

3 3x x

x x xx

x x 

  


 
  This does not simplify to avoid division by zero. 

 So, 
3

3

1
lim

3x

x

x




 does not exist.   
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One-sided Limits 

1. Right-Hand Limit: the limit of f as x approaches c from the right. lim ( )
x c

f x


 

 Ex7:  Find  
2

lim
x

f x


, when  
2 2

3 1 2

x x
f x

x x

 
 

 
 

Because we are approaching from the right, we must substitute into the piece of the piecewise functions that 
represents values of x greater than 2. 

   
2 2

lim lim 3 1 3 2 1 5
x x

f x x
  

      Note:  The limit value differs from the function value at 2. 

2. Left-Hand Limit: the limit of f as x approaches c from the left. lim ( )
x c

f x


 

Ex8:  
2

lim 2
x

x


  

We cannot use direct substitution, because we cannot approach 2 from the left.  The domain of the function 

  2f x x   is  2, .  So 
2

lim 2
x

x


  does not exist. 

Two-sided Limit 

 lim ( )
x c

f x


 

**  f x has a limit as x approaches c if and only if the right and left hand limits at c exist and are equal** 

Limits That Fail to Exist 

 Right and Left Behavior Differs:     lim lim
x c x c

f x f x
  

  

 Unbounded:     lim or lim
x c x c

f x f x
 

     

 Oscillating:  For example, 
0

1
limsin
x x

 
 
 

.  Show by graphing. 
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Ex9:  Use the graph below of  f x  to answer the following questions. 

 

a.   
1

lim
x

f x


  b.   
1

lim
x

f x


  c.   
1

lim
x

f x


  d.   1f  

    

 
1

lim 1
x

f x


     
1

lim 2
x

f x


    
1

lim does not exist
x

f x


   1 1f   
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PROPERTIES OF LIMITS: 

If , , ,  and  are real numbers and 

lim ( )    and   lim ( ) ,  then

1.  Sum and Difference Rules:                         lim( ( ) ( ))

The limit of the sum or difference of two funct

x c x c

x c

L M c k

f x L g x M

f x g x L M

 



 

  

ions is the sum or difference  of their limits.

2. Product Rule:                                            lim( ( ) ( ))

The limit of a product of two functions is the product of their limits.

3

x c
f x g x L M


  

.  Constant Multiple Rule:                              lim( ( ))

The limit of a constant times a function is the constant times the limit of the function.

4.  Quotient Rule:                   

x c
k f x k L


  

( )
                        lim , 0

( )

The limit of a quotient of two functions is the quotient of their limits, provided the limit of the 

denominator is not zero.

5.  Power Rule:If  and  are  

x c

f x L
M

g x M

r s


 

 

x c

integers, 0, then

               lim( ( ))  provided that is a real number.
r r r

s s s

s

f x L L






 

 Ex10:  Find 
0

tan
lim
x

x

x
. 

Using direct substitution, we divide by zero.  So try algebraic manipulation.  We can rewrite tan x  as 
sin

cos

x

x
. 

0 0 0 0

sin
tan sin sin 1coslim lim lim lim

cos cosx x x x

x
x x xx

x x x x x x   
     

Using the product rule, 
0 0 0

sin 1 sin 1 1
lim lim lim 1 1

cos cos 1x x x

x x

x x x x  
       

You Try: Calculate the limit.  
2

22

3 2
lim

4x

t t

t

 


 

QOD: Explain how left and right-hand limits relate to two-sided limits. 
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Sample AP Calculus AB Exam Question(s)  (taken from the released 2003 MC AP Exam): 
 

For which of the following does  
4

lim
x

f x


 exist?  (Note:  Each function shown is  f x .) 

 

I.  II.  III.   
 

(A) I only 
(B) II only 
(C) III only 
(D) I and II only 
(E) I and III only 
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Syllabus Objective: 1.1 – The student will calculate limits using the basic limit theorems. (Limits involving 
infinity.) 
 
Notation: 

    increasingly far to the right (or up) 

    increasingly far to the left (or down) 

 Ex1:  Graph: 
1 1 1

( ) .  Find lim  and lim
x x

f x
x x x 

 . 

    

1
lim 0
x x

     
1

lim 0
x x

  

Definition: 

 The line y=b is a horizontal asymptote of the graph of a function y = f(x) if either  

 lim ( )  or lim ( )
x x

f x b f x b
 

   

 Ex2:  Find any horizontal asymptote(s) of the function  
2

2

3 5

4

x x
f x

x

 



. 

Find 
2

2

3 5
lim

4x

x x

x

 


 (or 
2

2

3 5
lim

4x

x x

x

 


).  To calculate this limit, begin by dividing each term by the highest 

power of x, which in this case is 2x . 

2

2 2 2 2 2

22

22 2

3 5 1 5
33 5 3 0 0

lim lim lim 3
444 1 01

x x x

x x
x x x x x x x

xx
xx x

  

      
   

 
 

So the horizontal asymptote is 3y  . 

Note:  When finding 
 
 

lim
x

f x

g x
, you can use the following guidelines. 

 The 
 
 

lim
x

f x

g x
   if the degree of  f x  is greater than the degree of  g x . 
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 The 
 
 

lim 0
x

f x

g x
  if the degree of  f x  is less than the degree of  g x . 

 If the degree of  f x  is equal to the degree of  g x , then 
 
 

lim
x

f x

g x
 is equal to the ratio of the lead 

coefficients. 

Infinite Limits 

 When f approaches infinity as x approaches a, the limit does not exist, and is called unbounded. 

Definition:   

 The line x = a is a vertical asymptote of the graph of a function y = f(x) if either 

 lim ( )  or lim ( )
x a x a

f x f x
  

     

 Ex3:  Find the vertical asymptote(s) of   2

1

4
f x

x



. 

A fraction will approach   if the denominator of the fraction approaches zero.  To find the vertical asymptote(s), 
set the denominator equal to zero and solve for x. 

 2 4 0 2, 2x x x       

 Take a look at the graph:  

 
22

1
lim

4x x
 


 

22

1
lim

4x x
 


 

22

1
lim

4x x
 


 

22

1
lim

4x x
 


 

End Behavior Models:  As x becomes very large, a more complicated function can be modeled by a simpler one. 

 To see this, graph 4 3 2 4( ) 3 2 3 5 6 and ( ) 3f x x x x x g x x       Note: ( )
lim 1

( )x

f x

g x
  

 

 For larger values of x, the graphs appear alike. 
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Finding End Behavior Models: 

Right End Behavior Model 

Find g such that ( )
lim 1

( )x

f x

g x
  

Left End Behavior Model 

Find g such that ( )
lim 1

( )x

f x

g x


 

 Ex4:  Find an end behavior model for  
5 2

3

3 2 5 1

2 5

x x x
f x

x

  



. 

End behavior model for the numerator:  53x  because 
5 2

5

3 2 5 1
lim 1

3x

x x x

x

  
    

End behavior model for the denominator:  32x  because 
3

3

2
lim 1

2 5x

x

x



 

 

End behavior model for f:  
5

2
3

3 3

2 2

x
x

x
  

  

You Try: Find  lim
x

f x


 and  lim
x

f x


 when   x
f x

x
 . 

QOD: Is an infinite limit nonexistent?  Explain your answer. 
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Sample AP Calculus AB Exam Question(s)  (taken from the released 2003 MC AP Exam): 
 

1. For 0x  , the horizontal line 2y   is an asymptote for the graph of the function f.  Which of the 

following statements must be true? 

(A)   2f x   for all 0x   

(B)  0 2f   

(C)  2f is undefined 

(D)  
2

lim
x

f x


   

(E)  lim 2
x

f x


  

2. 
3 2

3 2

2 3 4
lim

4 3 2 1x

x x x

x x x

  


  
 

(A) 4 

(B) 1 

(C) 
1

4
 

(D) 0 

(E) −1 
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Syllabus Objective 2.1 – The student will analyze the continuity of an elementary function. 

Continuous Function (on an interval): a function whose outputs vary continuously with the inputs and do not jump 
from one value to another without taking on the values in between on the given interval 

(i.e. – The graph can be traced without lifting your pencil!) 

Continuous Function: a function that is continuous at every point of its domain 

Ex1:  Graph the function   1
f x

x
 .  Determine an interval in which the 

function is not continuous.  Is   1
f x

x
  a continuous function? 

 

In the interval  2,2 , the outputs do not take on all values in between  2f   and  2f  for any interval that 

includes x = 0.  So the function is not continuous in the interval  2,2 .  (Or any interval containing 0.) 

 f x  is a continuous function, because it is continuous on every point in its domain.  (x = 0 is not in its domain.) 

Definition: Continuity at a Point 

1. f (x) is continuous at an INTERIOR POINT c of its domain if 
lim ( ) ( )
x c

f x f c


  

a.  f c  is defined (exists) 

b.  lim
x c

f x


 exists 

c. lim ( ) ( )
x c

f x f c


  

2. f (x) is continuous at a LEFT ENDPOINT a or a RIGHT ENDPOINT b of its domain if 
 lim ( ) ( ) or lim ( ) ( )

x a x b
f x f a f x f b

  
   respectively. 



AP Calculus Notes:  Unit 1 – Limits & Continuity 

Page 12 of 16  Pearson Prentice Hall 2007 – Calculus: Graphical, Numerical, Algebraic 2.1 – 2.4 

These notes are aligned to the textbook referenced above and to the College Board Calculus AB curriculum. 

 

Ex2:  Find the points of discontinuity of the function shown in the graph. 

 

1x  :  
1

lim ( )
x

f x


 does not exist because the left- and right-hand limits are not equal. 

2x  :     
2

lim 1 2 2
x

f x f


    

 

Types of Discontinuity: 

1. Removable (hole) 

Ex3:   
2 16

4

x
f x

x





 at 4x   

 
 

2. Jump – one-sided limits exist, but are different 

Ex4:    f x x   (Greatest Integer Function), at every integer value of x 
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3. Infinite (occurs when there is a vertical asymptote) 

Ex5:    1

2
f x

x



 at 2x   

x

y

 
4. Oscillating 

Ex6:    1
sinf x

x
   
 

 at 0x   

 

Teacher Note: Have students graph on calculator and zoom in on x = 0 to watch the oscillation. 

Removing a Discontinuity:  a “hole” in a graph is a removable discontinuity 

Ex7:  Identify the point of discontinuity in the function  
2 3 4

1

x x
f x

x

 



.  Then write an extended 

function that is continuous at this point (“remove” the discontinuity). 

Point of Discontinuity:  
1 0

1

x

x

 
 

   

 
2 3 4

1

x x
f x

x

 



 is the graph of  

   4 1x x
f x

 


1x     4f x x    with a “hole” at 1x   . 

To fill the hole, we must find  1 1 4 5f       . 

Extended function:   
2 3 4

, 1
1

5, 1

x x
x

f x x
x

  
  

   
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Properties of Continuous Functions:  If f and g are continuous at x = c, then the following are continuous at x = c. 

 Sum:  f g  

 Difference:  f g  

 Product:  f g  

 Constant Multiple:  k f , for any real number k 

 Quotient:  
f

g
, provided   0g c   

Composite Functions:  If f is continuous at c and g is continuous at  f c , then the composite f g  is continuous 

at c. 

Intermediate Value Theorem:  A function  y f x  that is continuous on a closed interval  ,a b  takes on every 

value between  f a  and  f b . 

Ex8:  The local weatherman reported that the low temperature today was 67° and the high was 89°.  From 
this information, can you guarantee that sometime during the day the temperature was 73°?  Explain. 

YES.  Temperature is continuous.  It cannot jump from one degree to another without hitting every value in 
between.  So by the Intermediate Value Theorem, the temperature had to be 73° at some point during the day. 

You Try: Graph a function  f x  for which  
1

lim
x

f x


 exists, but is not continuous at 1x  . 

QOD:  Can a continuous function have a point of discontinuity?  Explain. 

 Sample AP Calculus AB Exam Question(s): 
 

On which of the following intervals is   2

1
f x

x
  not continuous? 

(A)  0,  

(B)  0,  

(C)  0,2  

(D)  1,2  

(E)  2, 1   
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Syllabus Objective:  The student will calculate limits using the basic limit theorems.  (Applications to 
instantaneous rate of change and slope)  

Average Rate of Change   = amount of change

time it takes (length of interval)
  Slope = 1 2

1 2

y y
m

x x





 

 Ex1: Find the average rate of change of 3( )f x x x   over the interval [1, 3]. 

Finding the average rate of change is the same as finding the slope of the secant line.  

 Average rate of change = 
       3 3

3 3 1 13 1 24
12

3 1 2 2

f f            


 

Pierre Fermat (1629) 
1. Start with the slope of a secant through P and a point Q nearby. 
2. Find the limiting value of the secant slope as Q approaches P. 
3. This is the slope of the curve at P and the slope of the tangent line to the curve at P. 

 
TANGENT TO A CURVE – the line through P with the slope as calculated above 

The SLOPE OF THE CURVE  y f x  at the point   ,P a f a  is 
0

( ) ( )
lim
h

f a h f a
m

h

 
   

Note:  As h approaches 0, the two points approach one point.  The slope of the curve at point P is the same 
as the slope of the tangent line at point P. 

Ex2: Find the slope of the parabola 2y x  at the point P(3, 9).  Write an equation for the tangent line at P. 

Slope:   
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Equation of tangent line:   9 6 3y x    

NORMAL LINE: the line perpendicular to a tangent line at a given point 

 Ex3:  Write the equation of the normal line in the example above. 

Perpendicular to the tangent at P:   1
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INSTANTANEOUS SPEED: an object’s speed at any given time 

Ex4:  An object is dropped from the top of a 50-ft building.  Its height above the ground after t seconds is 
250 4.9t .  How fast is it falling 1 second after it is dropped? 

We must find the instantaneous speed, or rate of change, at 1 second. 
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9.8    Note:  Speed must be nonnegative.  So the speed of the object at t = 1 is 9.8 ft/sec . 

You Try:  

1. Find the average rate of change of the function   2 cosf x x   on the interval  0, . 

2.  Write the equations of the tangent and normal lines for 2 4y x x   at 1x  . 

 

QOD: How is the slope of a tangent line derived from the slope of a secant line? 

 
Sample AP Calculus AB Exam Question(s)  (taken from the released 2003 MC AP Exam): 
 

Let f  be the function defined by   34 5 3f x x x   .  Which of the following is an equation of the line tangent to 

the graph of f at the point where 1x   ? 

(A) 7 3y x   

(B) 7 7y x   

(C) 7 11y x   

(D) 5 1y x    

(E) 5 5y x    


