Syllabus Objective: 1.1 – The student will calculate limits using the basic limit theorems.

LIMITS – how the outputs of a function behave as the inputs approach some value

<u>Notation</u>: "The limit as *x* approaches *c* of f(x)"

$$\lim_{x\to c} f(x)$$

Finding a Limit

I. Table

Ex1:
$$\lim_{x\to 0} \frac{\sin x}{x}$$

Use the table to choose values of *x* close to zero (from the left and right).

As *x* approaches 0, it appears the function is approaching 1.

Note: Existence at the point is not relevant when calculating a limit.

$$\lim_{x \to 0} \frac{\sin x}{x} = \boxed{1}$$
 Note: "Special Limit" – must memorize!

II. Graphically

Ex2:
$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2}$$

Graph the function and use the TRACE feature to see function values as we approach 2 from the left and right.

As *x* approaches 2, it appears the function is approaching 4.

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = 4$$

Page 1 of 16

Pearson Prentice Hall 2007 - Calculus: Graphical, Numerical, Algebraic 2.1 - 2.4These notes are aligned to the textbook referenced above and to the College Board Calculus AB curriculum.

III. Analytically

a. Direct Substitution

Ex3:
$$\lim_{x \to 2} \frac{x^2 - 2x + 8}{x + 2}$$

Substitute x = 2 into the function:

$$\lim_{x \to 2} \frac{x^2 - 2x + 8}{x + 2} = \frac{(2)^2 - 2(2) + 8}{2 + 2} = \boxed{2}$$

b. Algebraic Manipulation

Ex4: $\lim_{x \to -3} \frac{9 - x^2}{x + 3}$

We cannot use direct substitution, because of division by zero. So we must simplify the function algebraically.

$$\lim_{x \to -3} \frac{9 - x^2}{x + 3} = \lim_{x \to -3} \frac{(3 - x)(3 + x)}{(x + 3)} = \lim_{x \to -3} (3 - x) = 3 - (-3) = \boxed{6}$$

Ex5:
$$\lim_{x \to 0} \frac{\sqrt{1 - x}}{x}$$

We cannot use direct substitution, because of division by zero. Simplify the function algebraically by rationalizing the numerator.

$$\lim_{x \to 0} \frac{\sqrt{1-x}-1}{x} \cdot \frac{\sqrt{1-x}+1}{\sqrt{1-x}+1} = \lim_{x \to 0} \frac{1-x-1}{x(\sqrt{1-x}+1)} = \lim_{x \to 0} \frac{-1}{x(\sqrt{1-x}+1)}$$
$$= \lim_{x \to 0} \frac{-1}{\sqrt{1-x}+1} = \frac{-1}{\sqrt{1-0}+1} = \boxed{-\frac{1}{2}}$$

Nonexistent Limit

Ex6:
$$\lim_{x \to -3} \frac{x^3 - 1}{x + 3}$$

We cannot use direct substitution, because of division by zero. Factoring the numerator, we have:

$$\lim_{x \to -3} \frac{x^3 - 1}{x + 3} = \lim_{x \to -3} \frac{(x - 1)(x^2 + x + 1)}{x + 3}$$
 This does not simplify to avoid division by zero.
So,
$$\lim_{x \to -3} \frac{x^3 - 1}{x + 3}$$
 does not exist.

Page 2 of 16Pearson Prentice Hall 2007 – Calculus: Graphical, Numerical, Algebraic2.1 – 2.4These notes are aligned to the textbook referenced above and to the College Board Calculus AB curriculum.

One-sided Limits

1. <u>Right-Hand Limit</u>: the limit of f as x approaches c from the right. $\lim_{x \to c^+} f(x)$

Ex7: Find
$$\lim_{x \to 2^+} f(x)$$
, when $f(x) = \begin{cases} x^2 & x \le 2\\ 3x - 1 & x > 2 \end{cases}$

Because we are approaching from the right, we must substitute into the piece of the piecewise functions that represents values of x greater than 2.

 $\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} 3x - 1 = 3(2) - 1 = 5$ Note: The limit value differs from the function value at 2.

2. <u>Left-Hand Limit</u>: the limit of f as x approaches c from the left. $\lim_{x \to c^-} f(x)$ **Ex8**: $\lim_{x \to 2^-} \sqrt{x-2}$

We cannot use direct substitution, because we cannot approach 2 from the left. The domain of the function $f(x) = \sqrt{x-2}$ is $[2,\infty)$. So $\lim_{x\to 2^-} \sqrt{x-2}$ does not exist.

Two-sided Limit

$$\lim_{x\to c}f(x)$$

** f(x) has a limit as x approaches c if and only if the right and left hand limits at c exist and are equal**

Limits That Fail to Exist

- Right and Left Behavior Differs: $\lim_{x \to c^+} f(x) \neq \lim_{x \to c^-} f(x)$
- Unbounded: $\lim_{x \to c} f(x) = -\infty$ or $\lim_{x \to c} f(x) = \infty$
- Oscillating: For example, $\lim_{x \to 0} \sin\left(\frac{1}{x}\right)$. Show by graphing.

Ex9: Use the graph below of f(x) to answer the following questions.

PROPERTIES OF LIMITS:

If L, M, c, and k are real numbers and $\lim_{x \to c} f(x) = L$ and $\lim_{x \to c} g(x) = M$, then

1. Sum and Difference Rules: $\lim_{x \to c} (f(x) \pm g(x)) = L \pm M$

The limit of the sum or difference of two functions is the sum or difference of their limits.

2. Product Rule: $\lim_{x \to c} (f(x) \cdot g(x)) = L \cdot M$

The limit of a product of two functions is the product of their limits.

3. Constant Multiple Rule: $\lim(k \cdot f(x)) = k \cdot L$

The limit of a constant times a function is the constant times the limit of the function.

4. Quotient Rule:
$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{M}, M \neq 0$$

The limit of a quotient of two functions is the quotient of their limits, provided the limit of the denominator is not zero.

5. Power Rule: If r and s are integers, $s \neq 0$, then

 $\lim_{x \to c} (f(x))^{r/s} = L^{r/s}$ provided that $L^{r/s}$ is a real number.

Ex10: Find
$$\lim_{x\to 0} \frac{\tan x}{x}$$
.

Using direct substitution, we divide by zero. So try algebraic manipulation. We can rewrite $\tan x$ as $\frac{\sin x}{\cos x}$.

$$\lim_{x \to 0} \frac{\tan x}{x} = \lim_{x \to 0} \frac{\frac{\sin x}{\cos x}}{x} = \lim_{x \to 0} \frac{\sin x}{x \cos x} = \lim_{x \to 0} \frac{\sin x}{x} \cdot \frac{1}{\cos x}$$

Using the product rule, $\lim_{x \to 0} \frac{\sin x}{x} \cdot \frac{1}{\cos x} = \lim_{x \to 0} \frac{\sin x}{x} \cdot \lim_{x \to 0} \frac{1}{\cos x} = 1 \cdot \frac{1}{1} = \boxed{1}$

<u>You Try:</u> Calculate the limit. $\lim_{x \to 2} \frac{t^2 - 3t + 2}{t^2 - 4}$

QOD: Explain how left and right-hand limits relate to two-sided limits.

Sample AP Calculus AB Exam Question(s) (taken from the released 2003 MC AP Exam):

For which of the following does $\lim_{x \to 4} f(x)$ exist? (Note: Each function shown is f(x).)

- (C) III only
- (D) I and II only

(E) I and III only

Syllabus Objective: 1.1 – The student will calculate limits using the basic limit theorems. (Limits involving infinity.)

Notation:

 $-\infty$

- ∞ increasingly far to the right (or up)
 - increasingly far to the left (or down)

Ex1: Graph: $f(x) = \frac{1}{x}$. Find $\lim_{x \to \infty} \frac{1}{x}$ and $\lim_{x \to -\infty} \frac{1}{x}$.

Definition:

The line y=b is a **horizontal asymptote** of the graph of a function y = f(x) if either

 $\lim_{x \to \infty} f(x) = b \text{ or } \lim_{x \to -\infty} f(x) = b$

Ex2: Find any horizontal asymptote(s) of the function $f(x) = \frac{3x^2 - x + 5}{x^2 - 4}$.

Find $\lim_{x\to\infty} \frac{3x^2 - x + 5}{x^2 - 4}$ (or $\lim_{x\to\infty} \frac{3x^2 - x + 5}{x^2 - 4}$). To calculate this limit, begin by dividing each term by the highest power of *x*, which in this case is x^2 .

$$\lim_{x \to \infty} \frac{3x^2 - x + 5}{x^2 - 4} = \lim_{x \to \infty} \frac{\frac{3x^2}{x^2} - \frac{x}{x^2} + \frac{5}{x^2}}{\frac{x^2}{x^2} - \frac{4}{x^2}} = \lim_{x \to \infty} \frac{3 - \frac{1}{x} + \frac{5}{x^2}}{1 - \frac{4}{x^2}} = \frac{3 - 0 + 0}{1 - 0} = 3$$

So the horizontal asymptote is y = 3.

<u>Note</u>: When finding $\lim_{x\to\infty} \frac{f(x)}{g(x)}$, you can use the following guidelines.

• The $\lim_{x\to\infty} \frac{f(x)}{g(x)} = \infty$ if the degree of f(x) is greater than the degree of g(x).

Page 7 of 16Pearson Prentice Hall 2007 – Calculus: Graphical, Numerical, Algebraic2.1 – 2.4These notes are aligned to the textbook referenced above and to the College Board Calculus AB curriculum.

• The
$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0$$
 if the degree of $f(x)$ is less than the degree of $g(x)$.

• If the degree of f(x) is equal to the degree of g(x), then $\lim_{x \to \infty} \frac{f(x)}{g(x)}$ is equal to the ratio of the lead coefficients.

Infinite Limits

When f approaches infinity as x approaches a, the limit does not exist, and is called **unbounded**.

Definition:

The line x = a is a **vertical asymptote** of the graph of a function y = f(x) if either

$$\lim_{x \to a^+} f(x) = \pm \infty \text{ or } \lim_{x \to a^-} f(x) = \pm \infty$$

Ex3: Find the vertical asymptote(s) of $f(x) = \frac{1}{x^2 - 4}$.

A fraction will approach $\pm \infty$ if the denominator of the fraction approaches zero. To find the vertical asymptote(s), set the denominator equal to zero and solve for *x*.

$$x^{2} - 4 = 0 \Rightarrow \boxed{x = -2, x = 2}$$
Take a look at the graph:

$$\lim_{x \to -2^{-}} \frac{1}{x^{2} - 4} = \infty$$

$$\lim_{x \to -2^{+}} \frac{1}{x^{2} - 4} = -\infty$$

$$\lim_{x \to 2^{-}} \frac{1}{x^{2} - 4} = -\infty$$

$$\lim_{x \to -2^{+}} \frac{1}{x^{2} - 4} = -\infty$$

End Behavior Models: As x becomes very large, a more complicated function can be modeled by a simpler one.

To see this, graph
$$f(x) = 3x^4 - 2x^3 + 3x^2 - 5x + 6$$
 and $g(x) = 3x^4$ Note: $\lim_{x \to \pm \infty} \frac{f(x)}{g(x)} = 1$
WINDOW
Xmin= -3
Xmax=3
Xscl=1
Ymin= -2
Ymax=100
Yscl=1
Xres=1

For larger values of *x*, the graphs appear alike.

Page 8 of 16Pearson Prentice Hall 2007 – Calculus: Graphical, Numerical, Algebraic2.1 – 2.4These notes are aligned to the textbook referenced above and to the College Board Calculus AB curriculum.

Finding End Behavior Models:

Right End Behavior ModelLeft End Behavior ModelFind g such that
$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 1$$
Find g such that $\lim_{x \to \infty} \frac{f(x)}{g(x)} = 1$

Ex4: Find an end behavior model for $f(x) = \frac{3x^5 - 2x^2 + 5x + 1}{2x^3 - 5}$. End behavior model for the numerator: $3x^5$ because $\lim_{x \to \pm \infty} \frac{3x^5 - 2x^2 + 5x + 1}{3x^5} = 1$ End behavior model for the denominator: $2x^3$ because $\lim_{x \to \pm \infty} \frac{2x^3}{2x^3 - 5} = 1$

End behavior model for *f*: $\frac{3x^5}{2x^3} = \boxed{\frac{3}{2}x^2}$

<u>You Try:</u> Find $\lim_{x \to \infty} f(x)$ and $\lim_{x \to -\infty} f(x)$ when $f(x) = \frac{|x|}{x}$.

QOD: Is an infinite limit nonexistent? Explain your answer.

Sample AP Calculus AB Exam Question(s) (taken from the released 2003 MC AP Exam):

- 1. For $x \ge 0$, the horizontal line y = 2 is an asymptote for the graph of the function *f*. Which of the following statements must be true?
 - (A) $f(x) \neq 2$ for all $x \ge 0$
 - (B) f(0) = 2
 - (C) f(2) is undefined
 - (D) $\lim_{x\to 2} f(x) = \infty$
 - (E) $\lim_{x\to\infty} f(x) = 2$
- 2. $\lim_{x \to \infty} \frac{x^3 2x^2 + 3x 4}{4x^3 3x^2 + 2x 1} =$
 - (A) 4
 - **(B)** 1
 - (C) $\frac{1}{4}$
 - (D) 0
 - (E) -1

Syllabus Objective 2.1 – The student will analyze the continuity of an elementary function.

<u>Continuous Function (on an interval)</u>: a function whose outputs vary continuously with the inputs and do not jump from one value to another without taking on the values in between on the given interval

(i.e. – The graph can be traced without lifting your pencil!)

Continuous Function: a function that is continuous at every point of its domain

Ex1: Graph the function
$$f(x) = \frac{1}{x}$$
. Determine an interval in which the function is not continuous. Is $f(x) = \frac{1}{x}$ a continuous function?

In the interval [-2,2], the outputs do not take on all values in between f(-2) and f(2) for any interval that includes x = 0. So the function is **not** continuous in the interval [-2,2]. (Or any interval containing 0.)

f(x) is a continuous function, because it is continuous on every point in its domain. (x = 0 is not in its domain.)

Definition: Continuity at a Point

- 1. f(x) is continuous at an INTERIOR POINT *c* of its domain if $\lim_{x \to c} f(x) = f(c)$
 - a. f(c) is defined (exists)
 - b. $\lim_{x \to c} f(x)$ exists
 - c. $\lim_{x \to c} f(x) = f(c)$
- 2. f(x) is continuous at a LEFT ENDPOINT *a* or a RIGHT ENDPOINT *b* of its domain if $\lim_{x \to a^+} f(x) = f(a)$ or $\lim_{x \to b^-} f(x) = f(b)$ respectively.

Ex2: Find the points of discontinuity of the function shown in the graph.

x=1: $\lim_{x\to 1} f(x)$ does not exist because the left- and right-hand limits are not equal.

$$x=2$$
: $\lim_{x\to 2} f(x) = 1 \neq f(2) = 2$

Types of Discontinuity:

1. Removable (hole)

2. Jump – one-sided limits exist, but are different **Ex4**: f(x) = [x] (Greatest Integer Function), at every integer value of x

3. Infinite (occurs when there is a vertical asymptote)

4. Oscillating

Removing a Discontinuity: a "hole" in a graph is a removable discontinuity

Ex7: Identify the point of discontinuity in the function $f(x) = \frac{x^2 - 3x - 4}{x + 1}$. Then write an *extended* function that is continuous at this point ("remove" the discontinuity).

Point of Discontinuity: x + 1 = 0x = -1

$$f(x) = \frac{x^2 - 3x - 4}{x + 1}$$
 is the graph of $f(x) = \frac{(x - 4)(x + 1)}{(x + 1)} \Rightarrow f(x) = x - 4$ with a "hole" at $x = -1$.

To fill the hole, we must find f(-1) = -1 - 4 = -5.

Extended function:
$$f(x) = \begin{cases} \frac{x^2 - 3x - 4}{x + 1}, & x \neq -1 \\ -5, & x = -1 \end{cases}$$

Page 13 of 16Pearson Prentice Hall 2007 – Calculus: Graphical, Numerical, Algebraic2.1 – 2.4These notes are aligned to the textbook referenced above and to the College Board Calculus AB curriculum.

<u>Properties of Continuous Functions</u>: If f and g are continuous at x = c, then the following are continuous at x = c.

- Sum: f + g
- Difference: f g
- Product: $f \cdot g$
- Constant Multiple: $k \cdot f$, for any real number k
- Quotient: $\frac{f}{g}$, provided $g(c) \neq 0$

<u>Composite Functions</u>: If f is continuous at c and g is continuous at f(c), then the composite $f \circ g$ is continuous at c.

<u>Intermediate Value Theorem</u>: A function y = f(x) that is continuous on a closed interval [a,b] takes on every value between f(a) and f(b).

Ex8: The local weatherman reported that the low temperature today was 67° and the high was 89°. From this information, can you guarantee that sometime during the day the temperature was 73°? Explain.

YES. Temperature is continuous. It cannot jump from one degree to another without hitting every value in between. So by the *Intermediate Value Theorem*, the temperature had to be 73° at some point during the day.

<u>You Try:</u> Graph a function f(x) for which $\lim_{x \to 1} f(x)$ exists, but is not continuous at x = 1.

QOD: Can a continuous function have a point of discontinuity? Explain.

Sample AP Calculus AB Exam Question(s):

On which of the following intervals is $f(x) = \frac{1}{x^2}$ not continuous?

- (A) $(0,\infty)$
- (B) $[0,\infty)$
- (C) (0,2)
- (D) (1,2)
- (E) (-2, -1)

Syllabus Objective: The student will calculate limits using the basic limit theorems. (Applications to instantaneous rate of change and slope)

<u>Average Rate of Change</u> = $\frac{\text{amount of change}}{\text{time it takes (length of interval)}}$ Slope = $m = \frac{y_1 - y_2}{x_1 - x_2}$

Ex1: Find the average rate of change of $f(x) = x^3 - x$ over the interval [1, 3].

Finding the average rate of change is the same as finding the *slope* of the secant line.

Average rate of change =
$$\frac{f(3) - f(1)}{3 - 1} = \frac{\left[(3)^3 - 3 \right] - \left[(1)^3 - 1 \right]}{2} = \frac{24}{2} = \boxed{12}$$

Pierre Fermat (1629)

- 1. Start with the slope of a secant through *P* and a point *Q* nearby.
- 2. Find the limiting value of the secant slope as *Q* approaches *P*.
- 3. This is the slope of the curve at *P* and the slope of the tangent line to the curve at *P*.

TANGENT TO A CURVE – the line through *P* with the slope as calculated above

The SLOPE OF THE CURVE
$$y = f(x)$$
 at the point $P(a, f(a))$ is $m = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$

Note: As h approaches 0, the two points approach one point. The slope of the curve at point P is the same as the slope of the tangent line at point P.

Ex2: Find the slope of the parabola $y = x^2$ at the point P(3, 9). Write an equation for the tangent line at P.

Slope:
$$\lim_{h \to 0} \frac{f(3+h) - f(3)}{h} = \lim_{h \to 0} \frac{(3+h)^2 - (3)^2}{h} = \lim_{h \to 0} \frac{9 + 6h + h^2 - 9}{h} = \lim_{h \to 0} \frac{6h + h^2}{h} = \lim_{h \to 0} \frac{6h + h^$$

Equation of tangent line: y-9=6(x-3)

NORMAL LINE: the line perpendicular to a tangent line at a given point

Ex3: Write the equation of the normal line in the example above.

Perpendicular to the tangent at *P*: $y-9 = -\frac{1}{6}(x-3)$

Page 15 of 16Pearson Prentice Hall 2007 – Calculus: Graphical, Numerical, Algebraic2.1 – 2.4These notes are aligned to the textbook referenced above and to the College Board Calculus AB curriculum.

INSTANTANEOUS SPEED: an object's speed at any given time

Ex4: An object is dropped from the top of a 50-ft building. Its height above the ground after t seconds is $50-4.9t^2$. How fast is it falling 1 second after it is dropped?

We must find the instantaneous speed, or rate of change, at 1 second.

$$\lim_{h \to 0} \frac{50 - 4.9(1 + h)^2 - (50 - 4.9(1)^2)}{h} = \lim_{h \to 0} \frac{50 - 4.9 - 9.8h - 4.9h^2 - 50 + 4.9}{h} = \lim_{h \to 0} \frac{-9.8h - 4.9h^2}{h} = \lim_{h \to 0} -9.8 - 4.9h$$

= -9.8 Note: Speed must be nonnegative. So the speed of the object at t = 1 is 9.8 ft/sec.

You Try:

- 1. Find the average rate of change of the function $f(x) = 2 + \cos x$ on the interval $[0, \pi]$.
- 2. Write the equations of the tangent and normal lines for $y = x^2 4x$ at x = 1.

QOD: How is the slope of a tangent line derived from the slope of a secant line?

Sample AP Calculus AB Exam Question(s) (taken from the released 2003 MC AP Exam):

Let *f* be the function defined by $f(x) = 4x^3 - 5x + 3$. Which of the following is an equation of the line tangent to the graph of *f* at the point where x = -1?

- (A) y = 7x 3
- (B) y = 7x + 7
- (C) y = 7x + 11
- (D) y = -5x 1
- (E) y = -5x 5